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8.1 INTRODUCTION
The general topic of fluid mechanics encompasses a wide range of problems of
interest in engineering applications. The most basic definition of a fluid is to state
that a fluid is a material that conforms to the shape of its container. Thus, both
liquids and gases are fluids. Alternately, it can be stated that a material which,
in itself, cannot support shear stresses is a fluid. The reader familiar with the dis-
tortion energy theory of solids will recall that geometric distortion is the result of
shear stress while normal stress results in volumetric change. Thus, a fluid read-
ily distorts, since the resistance to shear is very low, and such distortion results
in flow.

The physical behavior of fluids and gases is very different. The differences in
behavior lead to various subfields in fluid mechanics. In general, liquids exhibit
constant density and the study of fluid mechanics of liquids is generally referred
to as incompressible flow. On the other hand, gases are highly compressible
(recall Boyle’s law from elementary physics [1]) and temperature dependent.
Therefore, fluid mechanics problems involving gases are classified as cases of
compressible flow.

In addition to considerations of compressibility, the relative degree to which
a fluid can withstand some amount of shear leads to another classification of fluid
mechanics problems. (Regardless of the definition, all fluids can support some
shear.) The resistance of a fluid to shear is embodied in the material property
known as viscosity. In a very practical sense, viscosity is a measure of the “thick-
ness” of a fluid. Consider the differences encountered in stirring a container
of water and a container of molasses. The act of stirring introduces shearing
stresses in the fluid. The “thinner,” less viscous, water is easy to stir; the “thicker,”
more viscous, molasses is harder to stir. The physical effect is represented by
the shear stresses applied to the “stirrer” by the fluid. The concept of viscosity is
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embodied in Newton’s law of viscosity [2], which states that the shear stress in a
fluid is proportional to the velocity gradient.

In a one-dimensional case, the velocity gradient and Newton’s law of vis-
cosity can be described in reference to Figure 8.1a. A long flat plate is moving
with velocity U̇ in the x direction and separated from a fixed surface located at
y = 0 by a thin fluid film of thickness h. Experiments show that the fluid adheres
to both surfaces, so that the fluid velocity at the fixed surface is zero, and at the
moving plate, the fluid velocity is U̇ (this phenomenon is known as the no slip
condition). If pressure is constant throughout the fluid, the velocity distribution
between the moving plate and the fixed surface is linear, as in Figure 8.1b, so the
fluid velocity at any point is given by

u̇(y) = y

h
U̇ (8.1)

To maintain the motion, a force in the direction of motion must be applied to the
plate. The force is required to keep the plate in equilibrium, since the fluid exerts
a friction force that opposes the motion. It is known from experiments that
the force per unit area (frictional shearing stress) required to maintain motion is
proportional to velocity U̇ of the moving plate and inversely proportional to dis-
tance h. In general, the frictional shearing stress is described in Newton’s law of
viscosity as

� = �
du̇

dy
(8.2)

where the proportionality constant � is called the absolute viscosity of the fluid.
Absolute viscosity (hereafter simply viscosity) is a fundamental material prop-
erty of fluid media since, as shown by Equation 8.2, the ability of a fluid to sup-
port shearing stress depends directly on viscosity.

The relative importance of viscosity effects leads to yet other subsets of fluid
mechanics problems, as mentioned. Fluids that exhibit very little viscosity are
termed inviscid and shearing stresses are ignored; on the other hand, fluids with
significant viscosity must be considered to have associated significant shear
effects. To place the discussion in perspective, water is considered to be an in-
compressible, viscous fluid, whereas air is a highly compressible yet inviscid

(a)

U�

x

y h

(b)

U�

h

Figure 8.1 
(a) Moving plate separated by a fluid layer from a fixed
surface. (b) Velocity profile across the fluid thickness.
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fluid. In general, liquids are most often treated as incompressible but the viscos-
ity effects depend specifically on the fluid. Gases, on the other hand, are gener-
ally treated as compressible but inviscid.

In this chapter, we examine only incompressible fluid flow. The mathemat-
ics and previous study required for examination of compressible flow analysis is
deemed beyond the scope of this text. We, however, introduce viscosity effects in
the context of two-dimensional flow and present the basic finite element formu-
lation for solving such problems. The extension to three-dimensional fluid flow
is not necessarily as straightforward as in heat transfer and (as shown in Chap-
ter 9) in solid mechanics. Our introduction to finite element analysis of fluid flow
problems shows that the concepts developed thus far in the text can indeed be
applied to fluid flow but, in the general case, the resulting equations, although
algebraic as expected from the finite element method, are nonlinear and special
solution procedures must be applied.

8.2 GOVERNING EQUATIONS
FOR INCOMPRESSIBLE FLOW

One of the most important physical laws governing motion of any continuous
medium is the principle of conservation of mass. The equation derived by appli-
cation of this principle is known as the continuity equation. Figure 8.2 shows a
differential volume (a control volume) located at an arbitrary, fixed position in
a three-dimensional fluid flow. With respect to a fixed set of Cartesian axes,
the velocity components parallel to the x, y, and z axes are denoted u, v, and w,
respectively. (Note that here we take the standard convention of fluid mechanics
by denoting velocities without the “dot” notation.) The principle of conservation
of mass requires that the time rate of change of mass within the volume must

Figure 8.2 Differential volume element in
three-dimensional flow.
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be in balance with the net mass flow rate into the volume. Total mass inside the
volume is � dV, and since dV is constant, we must have

∂�

∂ t
dV =

∑
(mass flow in − mass flow out)

and the partial derivative is used because density may vary in space as well as
time. Using the velocity components shown, the rate of change of mass in the
control volume resulting from flow in the x direction is

ṁ x = � u dy dz −
[

� u + ∂ (� u)

∂x
dx

]
dy dz (8.3a)

while the corresponding terms resulting from flow in the y and z directions are

ṁ y = � v dx dz −
[

� v + ∂ (� v)

∂y
dy

]
dx dz (8.3b)

ṁ z = � w dx dy −
[

� w + ∂ (� w)

∂ z
dz

]
dx dy (8.3c)

The rate of change of mass then becomes

∂�

∂ t
dV = ṁ x + ṁ y + ṁ z = −

[
∂ (� u)

∂x
+ ∂ (� v)

∂y
+ ∂ (� w)

∂ z

]
dx dy dz (8.4)

Noting that dV = dx dy dz , Equation 8.4 can be written as

∂�

∂ t
+ u

∂�

∂x
+ v

∂�

∂y
+ w

∂�

∂ z
+ �

[
∂u

∂x
+ ∂v

∂y
+ ∂w

∂ z

]
= 0 (8.5)

Equation 8.5 is the continuity equation for a general three-dimensional flow
expressed in Cartesian coordinates.

Restricting the discussion to steady flow (with respect to time) of an incom-
pressible fluid, density is independent of time and spatial coordinates so Equa-
tion 8.5 becomes

∂u

∂x
+ ∂v

∂y
+ ∂w

∂ z
= 0 (8.6)

Equation 8.6 is the continuity equation for three-dimensional, incompressible,
steady flow expressed in Cartesian coordinates. As this is one of the most funda-
mental equations in fluid flow, we use it extensively in developing the finite
element approach to fluid mechanics.

8.2.1 Rotational and Irrotational Flow

Similar to rigid body dynamics, consideration must be given in fluid dynamics
as to whether the flow motion represents translation, rotation, or a combination
of the two types of motion. Generally, in fluid mechanics, pure rotation (i.e.,
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rotation about a fixed point) is not of as much concern as in rigid body dynamics.
Instead, we classify fluid motion as rotational (translation and rotation com-
bined) or irrotational (translation only). Owing to the inherent deformability of
fluids, the definitions of translation and rotation are not quite the same as for
rigid bodies. To understand the difference, we focus on the definition of rotation
in regard to fluid flow.

A flow field is said to be irrotational if a typical element of the moving fluid
undergoes no net rotation. A classic example often used to explain the concept is
that of the passenger carriages on a Ferris wheel. As the wheel turns through one
revolution, the carriages also move through a circular path but remain in fixed
orientation relative to the gravitational field (assuming the passengers are well-
behaved). As the carriage returns to the starting point, the angular orientation of
the carriage is exactly the same as in the initial orientation, hence no net rotation
occurred. To relate the concept to fluid flow, we consider Figure 8.3, depicting
two-dimensional flow through a conduit. Figure 8.3a shows an element of fluid
undergoing rotational flow. Note that, in this instance, we depict the fluid ele-
ment as behaving essentially as a solid. The fluid has clearly undergone transla-
tion and rotation. Figure 8.3b depicts the same situation in the case of irrotational
flow. The element has deformed (angularly), and we indicate that angular defor-
mation via the two angles depicted. If the sum of these two angles is zero, the
flow is defined to be irrotational. As is shown in most basic fluid mechanics text-
books [2], the conditions for irrotationality in three-dimensional flow are

∂v

∂x
− ∂u

∂y
= 0

∂w

∂x
− ∂u

∂ z
= 0

∂w

∂y
− ∂v

∂ z
= 0

(8.7)

When the expressions given by Equations 8.7 are not satisfied, the flow is rota-
tional and the rotational rates can be defined in terms of the partial derivatives of
the same equation. In this text, we consider only irrotational flows and do not
proceed beyond the relations of Equation 8.7.

Figure 8.3 Fluid element in (a) rotational flow and (b) irrotational flow.
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8.3 THE STREAM FUNCTION IN 
TWO-DIMENSIONAL FLOW

We next consider the case of two-dimensional, steady, incompressible, irrota-
tional flow. (Note that we implicitly assume that viscosity effects are negligible.)
Applying these restrictions, the continuity equation is

∂u

∂x
+ ∂v

∂y
= 0 (8.8)

and the irrotationality conditions reduce to

∂u

∂y
− ∂v

∂x
= 0 (8.9)

Equations 8.8 and 8.9 are satisfied if we introduce (define) the stream function
�(x , y) such that the velocity components are given by

u = ∂�

∂y

v = − ∂�

∂x

(8.10)

These velocity components automatically satisfy the continuity equation. The
irrotationality condition, Equation 8.10, becomes

∂u

∂y
− ∂v

∂x
= ∂

∂y

(
∂�

∂y

)
− ∂

∂x

(
− ∂�

∂x

)
= ∂2�

∂x 2
+ ∂2�

∂y2
= ∇ 2� = 0 (8.11)

Equation 8.11 is Laplace’s equation and occurs in the governing equations for
many physical phenomena. The symbol ∇ represents the vector derivative oper-
ator defined, in general, by

∇ = ∂

∂x
i + ∂

∂y
j + ∂

∂ z
k in Cartesian coordinates and ∇ 2 = ∇ · ∇

Let us now examine the physical significance of the stream function �(x , y)
in relation to the two-dimensional flow. In particular, we consider lines in the
(x, y) plane (known as streamlines) along which the stream function is constant.
If the stream function is constant, we can write

d� = ∂�

∂x
dx + ∂�

∂y
dy = 0 (8.12)

or

d� = −v dx + u dy = 0 (8.13)

The tangent vector at any point on a streamline can be expressed as
nt = dx i + dyj and the fluid velocity vector at the same point is V = ui + vj.
Hence, the vector product V × nt = (−v dx + u dy)k has zero magnitude, per
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Equation 8.13. The vector product of two nonzero vectors is zero only if the vec-
tors are parallel. Therefore, at any point on a streamline, the fluid velocity vector
is tangent to the streamline.

8.3.1 Finite Element Formulation

Development of finite element characteristics for fluid flow based on the stream
function is straightforward, since (1) the stream function �(x , y) is a scalar
function from which the velocity vector components are derived by differen-
tiation and (2) the governing equation is essentially the same as that for two-
dimensional heat conduction. To understand the significance of the latter point,
reexamine Equation 7.23 and set � = T , kx = ky = 1, Q = 0, and h = 0. The
result is the Laplace equation governing the stream function.

The stream function over the domain of interest is discretized into finite
elements having M nodes:

�(x , y) =
M∑

i=1

Ni (x , y)� i = [N ]{�} (8.14)

Using the Galerkin method, the element residual equations are
∫

A(e)

Ni (x , y)

(
∂2�

∂x 2
+ ∂2�

∂y2

)
dx dy = 0 i = 1, M (8.15)

or
∫

A(e)

[N ]T

(
∂2�

∂x 2
+ ∂2�

∂y2

)
dx dy = 0 (8.16)

Application of the Green-Gauss theorem gives
∫

S(e)

[N ]T ∂�

∂x
nx dS −

∫

A(e)

∂ [N ]T

∂x

∂�

∂x
dx dy +

∫

S(e)

[N ]T ∂�

∂y
n y dS

−
∫

A(e)

∂ [N ]T

∂y

∂�

∂y
dx dy = 0 (8.17)

where S represents the element boundary and (nx , n y) are the components of the
outward unit vector normal to the boundary. Using Equations 8.10 and 8.14
results in

∫

A(e)

(
∂ [N ]T

∂x

∂ [N ]

∂x
+ ∂ [N ]T

∂y

∂ [N ]

∂y

)
dx dy {�} =

∫

S(e)

[N ]T (un y − vnx ) dS

(8.18)
and this equation is of the form

[
k (e)

] {�} = {
f (e)

}
(8.19)
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The M × M element stiffness matrix is

[
k (e)

] =
∫

A(e)

(
∂ [N ]T

∂x

∂ [N ]

∂x
+ ∂ [N ]T

∂y

∂ [N ]

∂y

)

dx dy (8.20)

and the nodal forces are represented by the M × 1 column matrix

{
f (e)

} =
∫

S(e)

[N ]T (un y − vnx ) dS (8.21)

Since the nodal forces are obtained via integration along element boundaries and
the unit normals for adjacent elements are equal and opposite, the forces on
interelement boundaries cancel during the assembly process. Consequently, the
forces defined by Equation 8.21 need be computed only for element boundaries
that lie on global boundaries. This observation is in keeping with similar obser-
vations made previously in context of other problem types.

8.3.2 Boundary Conditions

As the governing equation for the stream function is a second-order, partial dif-
ferential equation in two independent variables, four boundary conditions must
be specified and satisfied to obtain the solution to a physical problem. The man-
ner in which the boundary conditions are applied to a finite element model is
discussed in relation to Figure 8.4a. The figure depicts a flow field between two
parallel plates that form a smoothly converging channel. The plates are assumed
sufficiently long in the z direction that the flow can be adequately modeled as
two-dimensional. Owing to symmetry, we consider only the upper half of the
flow field, as in Figure 8.4b. Section a-b is assumed to be far enough from the
convergent section that the fluid velocity has an x component only. Since we ex-
amine only steady flow, the velocity at a-b is Uab = constant. A similar argument
applies at section c-d, far downstream, and we denote the x-velocity component
at that section as Ucd = constant. How far upstream or downstream is enough to
make these assumptions? The answer is a question of solution convergence. The
distances involved should increase until there is no discernible difference in the
flow solution. As a rule of thumb, the distances should be 10–15 times the width
of the flow channel.

As a result of the symmetry and irrotationality of the flow, there can be no
velocity component in the y direction along the line y = 0 (i.e., the x axis). The
velocity along this line is tangent to the line at all values of x. Given these obser-
vations, the x axis is a streamline; hence, � = � 1 = constant along the axis.
Similarly, along the surface of the upper plate, there is no velocity component
normal to the plate (imprenetrability), so this too must be a streamline along
which � = � 2 = constant. The values of � 1 and � 2 are two of the required
boundary conditions. Recalling that the velocity components are defined as
first partial derivatives of the stream function, the stream function must be
known only within a constant. For example, a stream function of the form
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Figure 8.4
(a) Uniform flow into a converging channel. (b) Half-symmetry
model showing known velocities and boundary values of the stream
function. (c) A relatively coarse finite element model of the flow
domain, using three-node triangular elements. This model includes
65 degrees of freedom before applying boundary conditions.

c

d

(a)

x

Uab

a

y

b

(c)

a

b

c

d

c

d

(b)

Uab

Ucd

a

b
�2

�1

�(x , y) = C + f (x , y) contributes no velocity terms associated with the con-
stant C. Hence, one (constant) value of the stream function can be arbitrarily
specified. In this case, we choose to set � 1 = 0. To determine the value of � 2, we
note that, at section a-b (which we have arbitrarily chosen as x = 0, the velocity
is

u = ∂�

∂y
= Uab = constant = � 2 − � 1

yb − ya
= � 2

yb
(8.22)
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so � 2 = ybUab . At any point on a-b, we have � = (� 2/yb)y = Uab y , so the
value of the stream function at any finite element node located on a-b is known.
Similarly, it can be shown that � = (� 2/yc)y = Uab(yb/yc)y along c-d, so nodal
values on that line are also known. If these arguments are carefully considered,
we see that the boundary conditions on � at the “corners” of the domain are con-
tinuous and well-defined.

Next we consider the force conditions across sections a-b and c-d. As noted,
the y-velocity components along these sections are zero. In addition, the y com-
ponents of the unit vectors normal to these sections are zero as well. Using these
observations in conjunction with Equation 8.21, the nodal forces on any element
nodes located on these sections are zero. The occurrence of zero forces is equiv-
alent to stating that the streamlines are normal to the boundaries.

If we now utilize a mesh of triangular elements (for example), as in Fig-
ure 8.4c, and follow the general assembly procedure, we obtain a set of global
equations of the form

[K ]{�} = {F } (8.23)

The forcing function on the right-hand side is zero at all interior nodes. At the
boundary nodes on sections a-b and c-d, we observe that the nodal forces are zero
also. At all element nodes situated on the line y = 0, the nodal values of the
stream function are � = 0, while at all element nodes on the upper plate profile
the values are specified as � = ybUab . The � = 0 conditions are analogous to
the specification of zero displacements in a structural problem. With such con-
ditions, the unknowns are the forces exerted at those nodes. Similarly, the speci-
fication of nonzero value of the stream function � along the upper plate profile
is analogous to a specified displacement. The unknown is the force required to
enforce that displacement.

The situation here is a bit complicated mathematically, as we have both zero
and nonzero specified values of the nodal variable. In the following, we assume
that the system equations have been assembled, and we rearrange the equations
such that the column matrix of nodal values is

{�} =





{�0}
{� s}
{�u}




 (8.24)

where {� 0} represents all nodes along the streamline for which � = 0, {� s} rep-
resents all nodes at which the value of � is specified, and {� u} corresponds to all
nodes for which � is unknown. The corresponding global force matrix is

{F} =





{F0}
{Fs}
{0}




 (8.25)

and we note that all nodes at which � is unknown are internal nodes at which the
nodal forces are known to be zero.
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Using the notation just defined, the system equations can be rewritten (by
partitioning the stiffness matrix) as




[K00] [K0s] [K0u]
[Ks0] [Kss] [Ksu]
[Ku0] [Kus] [Kuu]










{�0}
{� s}
{�u}




 =





{F0}
{Fs}
{0}




 (8.26)

Since �0 = 0, the first set of partitioned equations become

[K0s]{� s} + [K0u]{� u} = {F0} (8.27)

and the values of F0 can be obtained only after solving for {� u} using the re-
maining equations. Hence, Equation 8.27 is analogous to the reaction force equa-
tions in structural problems and can be eliminated from the system temporarily.
The remaining equations are

[
[Kss] [Ksu]
[Kus] [Kuu]

] {
{� s}
{� u}

}
=

{
{Fs}
{0}

}
(8.28)

and it must be noted that, even though the stiffness matrix is symmetric, [Ksu]
and [Kus] are not the same. The first partition of Equation 8.28 is also a set of
“reaction” equations given by

[Kss] {� s} + [Ksu] {� u} = {Fs} (8.29)

and these are used to solve for {Fs} but, again, after {� u} is determined. The sec-
ond partition of Equation 8.28 is

[Kus] {� s} + [Kuu] {� u} = {0} (8.30)

and these equations have the formal solution

{� u} = −[Kuu]−1[Kus] {� s} (8.31)

since the values in {� s} are known constants. Given the solution represented by
Equation 8.31, the “reactions” in Equations 8.27 and 8.28 can be computed
directly.

As the velocity components are of major importance in a fluid flow, we must
next utilize the solution for the nodal values of the stream function to compute
the velocity components. This computation is easily accomplished given Equa-
tion 8.14, in which the stream function is discretized in terms of the nodal values.
Once we complete the already described solution procedure for the values of the
stream function at the nodes, the velocity components at any point in a specified
finite element are

u(x , y) = ∂�

∂y
=

M∑

i=1

∂ Ni

∂y
� i = ∂ [N ]T

∂y
{�}

v(x , y) = − ∂�

∂x
= −

M∑

i=1

∂ Ni

∂x
� i = − ∂ [N ]T

∂x
{�}

(8.32)
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Note that if, for example, a three-node triangular element is used, the velocity
components as defined in Equation 8.32 have constant values everywhere in the
element and are discontinuous across element boundaries. Therefore, a large
number of small elements are required to obtain solution accuracy. Application
of the stream function to a numerical example is delayed until we discuss an
alternate approach, the velocity potential function, in the next section.

8.4 THE VELOCITY POTENTIAL FUNCTION 
IN TWO-DIMENSIONAL FLOW

Another approach to solving two-dimensional incompressible, inviscid flow
problems is embodied in the velocity potential function. In this method, we
hypothesize the existence of a potential function �(x , y) such that 

u(x , y) = − ∂�

∂x

v(x , y) = − ∂�

∂y

(8.33)

and we note that the velocity components defined by Equation 8.33 automati-
cally satisfy the irrotationality condition. Substitution of the velocity definitions
into the continuity equation for two-dimensional flow yields

∂u

∂x
+ ∂v

∂y
= ∂2�

∂x 2
+ ∂2�

∂y2
= 0 (8.34)

and, again, we obtain Laplace’s equation as the governing equation for 2-D flow
described by a potential function. 

We examine the potential formulation in terms of the previous example of a
converging flow between two parallel plates. Referring again to Figure 8.4a, we
now observe that, along the lines on which the potential function is constant, we
can write

d� = ∂�

∂x
dx + ∂�

∂y
dy = −(u dx + v dy) = 0 (8.35)

Observing that the quantity u dx + v dy is the magnitude of the scalar product of
the velocity vector and the tangent to the line of constant potential, we conclude
that the velocity vector at any point on a line of constant potential is perpendic-
ular to the line. Hence, the streamlines and lines of constant velocity potential
(equipotential lines) form an orthogonal “net” (known as the flow net) as de-
picted in Figure 8.5.

The finite element formulation of an incompressible, inviscid, irrotational
flow in terms of velocity potential is quite similar to that of the stream function
approach, since the governing equation is Laplace’s equation in both cases. By
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Figure 8.5 Flow net of lines of constant stream function � and
constant velocity potential �.

a

c

d

b

� � Constant
� � Constant

� � Constant

direct analogy with Equations 8.14–8.17, we write

�(x , y) =
M∑

i=1

Ni (x , y)�i = [N ] {�} (8.36)

∫

A(e)

Ni (x , y)

(
∂2�

∂x 2
+ ∂2�

∂y2

)
dx dy = 0 i = 1, M (8.37)

∫

A(e)

[
N T

] (
∂2�

∂x 2
+ ∂2�

∂y2

)
dx dy = 0 (8.38)

∫

S(e)

[N ]T ∂�

∂x
nx dS −

∫

A(e)

∂ [N ]T

∂x

∂�

∂x
dx dy +

∫

S(e)

[N ]T ∂�

∂y
n y dS

−
∫

A(e)

∂ [N ]T

∂y

∂�

∂y
dx dy = 0 (8.39)

Utilizing Equation 8.36 in the area integrals of Equation 8.39 and substituting the
velocity components into the boundary integrals, we obtain

∫

A(e)

(
∂ [N ]T

∂x

∂ [N ]

∂x
+ ∂ [N ]T

∂y

∂ [N ]

∂y

)
dx dy {�} = −

∫

S(e)

[N ]T (unx + vn y) dS

(8.40)
or

[
k (e)

] {�} = {
f (e)

}
(8.41)
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The element stiffness matrix is observed to be identical to that of the stream
function method. The nodal force vector is significantly different, however. Note
that, in the right-hand integral in Equation 8.40, the term in parentheses is the
scalar product of the velocity vector and the unit normal to an element boundary.
Therefore, the nodal forces are allocations to the nodes of the flow across the
element boundaries. (Recall that we assume unit dimension in the z direction, so
the terms on the right-hand side of Equation 8.40 are volumetric flow rates.) As
usual, on internal element boundaries, the contributions from adjacent elements
are equal and opposite and cancel during the assembly step. Only elements on
global boundaries have nonzero nodal force components. 

To illustrate both the stream function and velocity potential methods, we now examine
the case of a cylinder placed transversely to an otherwise uniform stream, as shown in
Figure 8.6a. The underlying assumptions are

1. Far upstream from the cylinder, the flow field is uniform with u = U = constant
and v = 0.

2. Dimensions in the z direction are large, so that the flow can be considered two
dimensional.

3. Far downstream from the cylinder, the flow is again uniform in accordance with
assumption 1.

EXAMPLE 8.1

U

y

x

(a)

d

cb

a e

� � Uyb

� � 0

� � 0

��

�x
� Constant

(b)

Figure 8.6
(a) Circular cylinder in a uniform, ideal flow. (b) Quarter-symmetry
model of cylinder in a uniform stream.
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■ Velocity Potential
Given the assumptions and geometry, we need consider only one-fourth of the flow field,
as in Figure 8.6b, because of symmetry. The boundary conditions first are stated for
the velocity potential formulation. Along x = 0 (a-b), we have u = U = constant and
v = 0. So,

u(0, y) = U = − ∂�

∂ x

v(0, y) = 0 = − ∂�

∂y

and the unit (outward) normal vector to this surface is (nx , n y ) = (−1, 0) . Hence,
for every element having edges (therefore, nodes) on a-b, the nodal force vector is
known as

{
f (e)

} = −
∫

S (e)

[N ]T (unx + vn y ) dS = U

∫

S (e)

[N ]T dS

and the integration path is simply dS = dy between element nodes. Note the change in
sign, owing to the orientation of the outward normal vector. Hence, the forces associated
with flow into the region are positive and the forces associated with outflow are negative.
(The sign associated with inflow and outflow forces depend on the choice of signs in
Equation 8.33. If, in Equation 8.33, we choose positive signs, the formulation is essen-
tially the same.)

The symmetry conditions are such that, on surface (edge) c-d, the y-velocity compo-
nents are zero and x = xc , so we can write

v = − ∂�

∂y
= − d�(xc , y)

dy
= 0

This relation can be satisfied if � is independent of the y coordinate or �(xc , y) is con-
stant. The first possibility is quite unlikely and requires that we assume the solution form.
Hence, the conclusion is that the velocity potential function must take on a constant value
on c-d. Note, most important, this conclusion does not imply that the x-velocity compo-
nent is zero.

Along b-c, the fluid velocity has only an x component (impenetrability), so we can
write this boundary condition as 

∂�

∂n
= ∂�

∂ x
nx + ∂�

∂y
n y = −(unx + vn y ) = 0

and since v = 0 and nx = 0 on this edge, we find that all nodal forces are zero along b-c,
but the values of the potential function are unknown.

The same argument holds for a-e-d. Using the symmetry conditions along this sur-
face, there is no velocity perpendicular to the surface, and we arrive at the same conclu-
sion: element nodes have zero nodal force values but unknown values of the potential
function.
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In summary, for the potential function formulation, the boundary conditions are

1. Boundary a-b: � unknown, forces known.
2. Boundary b-c: � unknown, forces = 0.
3. Boundary c-d: � = constant, forces unknown.
4. Boundary a-e-d: � unknown, forces = 0.

Now let us consider assembling the global equations. Per the usual assembly proce-
dure, the equations are of the matrix form

[K ]{�} = {F }
and the force vector on the right-hand side contains both known and unknown values. The
vector of nodal potential values {�} is unknown—we have no specified values. We do
know that, along c-d, the nodal values of the potential function are constant, but we do not
know the value of the constant. However, in light of Equation 8.33, the velocity compo-
nents are defined in terms of first partial derivatives, so an arbitrary constant in the po-
tential function is of no consequence, as with the stream function formulation. Therefore,
we need specify only an arbitrary value of � at nodes on c-d in the model, and the system
of equations becomes solvable.

■ Stream Function Formulation
Developing the finite element model for this particular problem in terms of the stream
function is a bit simpler than for the velocity potential. For reasons that become clear when
we write the boundary conditions, we also need consider only one-quarter of the flow field
in the stream function approach. The model is also as shown in Figure 8.6b. Along a-e, the
symmetry conditions are such that the y-velocity components are zero. On e-d, the veloc-
ity components normal to the cylinder must be zero, as the cylinder is impenetrable.
Hence, a-e-d is a streamline and we arbitrarily set � = 0 on that streamline. Clearly, the
upper surface b-c is also a streamline and, using previous arguments from the convergent
flow example, we have � = U yb along this edge. (Note that, if we had chosen the value of
the stream function along a-e-d to be a nonzero value C, the value along b-c would be
� = U yb + C .) On a-b and c-d, the nodal forces are zero, also per the previous discussion,
and the nodal values of the stream function are unknown. Except for the geometrical
differences, the solution procedure is the same as that for the converging flow.

A relatively coarse mesh of four-node quadrilateral elements used for solving this
problem using the stream function is shown in Figure 8.7a. For computation, the values
U = 40, distance a-b = yb = 5, and cylinder radius = 1 are used. The resulting stream-
lines (lines of constant � ) are shown in Figure 8.7b. Recalling that the streamlines are
lines to which fluid velocity is tangent at all points, the results appear to be correct
intuitively. Note that, on the left boundary, the streamlines appear to be very nearly per-
pendicular to the boundary, as required if the uniform velocity condition on that boundary
is satisfied.

For the problem at hand, we have the luxury of comparing the finite element results
with an “approximately exact” solution, which gives the stream function as

� = U
x 2 + y2 − R2

x 2 + y2
y
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Table 8.1 Selected Nodal Stream Function and Velocity Values for Solution of Example 8.1

Node �FE �Exact VFE VExact

1 0 0 75.184 80
2 0 0 1.963 0
8 0 0 38.735 38.4

16 123.63 122.17 40.533 40.510
20 142.48 137.40 44.903 42.914
21 100.03 99.37 47.109 45.215
22 67.10 64.67 51.535 49.121
23 40.55 39.36 57.836 55.499
24 18.98 18.28 68.142 65.425
45 67.88 65.89 41.706 40.799
46 103.87 100.74 42.359 41.018

This solution is actually for a cylinder in a uniform stream of indefinite extent in both the
x and y directions (hence, the use of the oxymoron, approximately exact) but is sufficient
for comparison purposes. Table 8.1 lists values of � obtained by the finite element solu-
tion and the preceding analytical solution at several selected nodes in the model. The
computed magnitude of the fluid velocity at those points is also given. The nominal errors
in the finite element solution versus the analytical solution are about 4 percent for the
value of the stream function and 6 percent for the velocity magnitude. While not shown
here, a refined element mesh consisting of 218 elements was used in a second solution
and the errors decreased to less than 1 percent for both the stream function value and the
velocity magnitude.

Earlier in the chapter, the analogy between the heat conduction problem and
the stream function formulation is mentioned. It may be of interest to the reader
to note that the stream function solution presented in Example 8.1 is generated
using a commercial software package and a two-dimensional heat transfer
element. The particular software does not contain a fluid element of the type
required for the problem. However, by setting the thermal conductivities to unity
and specifying zero internal heat generation, the problem, mathematically, is the
same. That is, nodal temperatures become nodal values of the stream function.
Similarly, spatial derivatives of temperature (flux values) become velocity com-
ponents if the appropriate sign changes are taken into account. The mathematical
similarity of the two problems is further illustrated by the finite element solution
of the previous example using the velocity potential function.

Obtain a finite element solution for the problem of Example 8.1 via the velocity potential
approach, using, specifically, the heat conduction formulation modified as required.

EXAMPLE 8.2
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■ Solution
First let us note the analogies

u = − ∂�

∂ x
⇒ qx = −kx

∂T

∂ x

v = − ∂�

∂y
⇒ qy = −ky

∂T

∂y

so that, if kx = ky = 1, then the velocity potential is directly analogous to temperature and
the velocity components are analogous to the respective flux terms. Hence, the boundary
conditions, in terms of thermal variables become

qx = U qy = 0 on a-b

qx = qy = 0 on b-c and a-e-d

T = constant = 0 on c-d (the value is arbitrary)

Figure 8.8 shows a coarse mesh finite element solution that plots the lines of constant
velocity potential � (in the thermal solution, these lines are lines of constant temperature,

Figure 8.8 Lines of constant velocity potential � for the finite
element solution of Example 8.2.
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Table 8.2 Velocity Components at Selected Nodes in Example 8.2

Node u v

4 40.423 0.480
19 41.019 0.527
20 42.309 0.594
21 43.339 0.516
5 43.676 0.002

or isotherms). A direct comparison between this finite element solution and that described
for the stream function approach is not possible, since the element meshes are different.
However, we can assess accuracy of the velocity potential solution by examination of the
results in terms of the boundary conditions. For example, along the upper horizontal
boundary, the y-velocity component must be zero, from which it follows that lines of con-
stant � must be perpendicular to the boundary. Visually, this condition appears to be rea-
sonably well-satisfied in Figure 8.8. An examination of the actual data presents a slightly
different picture. Table 8.2 lists the computed velocity components at each node along the
upper surface. Clearly, the values of the y-velocity component v are not zero, so addi-
tional solutions using refined element meshes are in order.

Observing that the stream function and velocity potential methods are
amenable to solving the same types of problems, the question arises as to which
should be selected in a given instance. In each approach, the stiffness matrix is
the same, whereas the nodal forces differ in formulation but require the same
basic information. Hence, there is no significant difference in the two proce-
dures. However, if one uses the stream function approach, the flow is readily
visualized, since velocity is tangent to streamlines. It can also be shown [2] that
the difference in value of two adjacent streamlines is equal to the flow rate (per
unit depth) between those streamlines.

8.4.1 Flow around Multiple Bodies

For an ideal (inviscid, incompressible) flow around multiple bodies, the stream
function approach is rather straightforward to apply, especially in finite element
analysis, if the appropriate boundary conditions can be determined. To begin
the illustration, let us reconsider flow around a cylinder as in Example 8.1. Ob-
serving that Equation 8.11 governing the stream function is linear, the principle
of superposition is applicable; that is, the sum of any two solutions to the equa-
tion is also a solution. In particular, we consider the stream function to be given
by

�(x , y) = � 1(x , y) + a� 2(x , y) (8.42)

where a is a constant to be determined. The boundary conditions at the horizon-
tal surfaces (S1) are satisfied by � 1, while the boundary conditions on the surface
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of the cylinder (S2) are satisfied by � 2. The constant a must be determined so that
the combination of the two stream functions satisfies a known condition at some
point in the flow. Hence, the conditions on the two solutions (stream functions)
are

∂2� 1

∂x 2
+ ∂2� 1

∂y2
= 0 (everywhere in the domain)

(8.43)
∂2� 2

∂x 2
+ ∂2� 2

∂y2
= 0 (everywhere in the domain)

� 1 = U yb on S1 (8.44)

� 1 = 0 on S2 (8.45)

� 2 = 0 on S1 (8.46)

� 2 = 1 on S2 (8.47)

Note that the value of � 2 is (temporarily) set equal to unity on the surface of the
cylinder. The procedure is then to obtain two finite element solutions, one for
each stream function, and associated boundary conditions. Given the two solu-
tions, the constant a can be determined and the complete solution known. The
constant a, for example, is found by computing the velocity at a far upstream
position (where the velocity is known) and calculating a to meet the known
condition.

In the case of uniform flow past a cylinder, the solutions give the trivial result
that a = arbitrary constant, since we have only one surface in the flow, hence one
arbitrary constant. The situation is different if we have multiple bodies, however,
as discussed next.

Consider Figure 8.9, depicting two arbitrarily shaped bodies located in an
ideal fluid flow, which has a uniform velocity profile at a distance upstream
from the two obstacles. In this case, we consider three solutions to the governing

Figure 8.9 Two arbitrary bodies in a uniform stream. The
boundary conditions must be specified on S1, S2, and S3 within a
constant.

U

S3

S1

S2
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equation, so that the stream function can be represented by [3]

�(x , y) = � 1(x , y) + a� 2(x , y) + b� 3(x , y) (8.48)

where a and b are constants to be determined. Again, we know that each inde-
pendent solution in Equation 8.48 must satisfy Equation 8.11 and, recalling that
the stream function must take on constant value on an impenetrable surface, we
can express the boundary conditions on each solution as

� 1 = U yb on S1

� 1 = 0 on S2 and S3

� 2 = 0 on S1 and S3

� 2 = 1 on S2 (8.49)

� 3 = 0 on S1 and S2

� 3 = 1 on S3

To obtain a solution for the flow problem depicted in Figure 8.9, we must

1. Obtain a solution for � 1 satisfying the governing equation and the boundary
conditions stated for � 1.

2. Obtain a solution for � 2 satisfying the governing equation and the boundary
conditions stated for � 2.

3. Obtain a solution for � 3 satisfying the governing equation and the boundary
conditions stated for � 3.

4. Combine the results at (in this case) two points, where the velocity or
stream function is known in value, to determine the constants a and b in
Equation 8.48. For this example, any two points on section a-b are appro-
priate, as we know the velocity is uniform in that section.

As a practical note, this procedure is not generally included in finite element
software packages. One must, in fact, obtain the three solutions and hand calcu-
late the constants a and b, then adjust the boundary conditions (the constant val-
ues of the stream function) for entry into the next run of the software. In this case,
not only the computed results (stream function values, velocities) but the values
of the computed constants a and b are considerations for convergence of the
finite element solutions. The procedure described may seem tedious, and it is to
a certain extent, but the alternatives (other than finite element analysis) are much
more cumbersome.

8.5 INCOMPRESSIBLE VISCOUS FLOW
The idealized inviscid flows analyzed via the stream function or velocity poten-
tial function can reveal valuable information in many cases. Since no fluid is
truly inviscid, the accuracy of these analyses decreases with increasing viscosity
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of a real fluid. To illustrate viscosity effects (and the arising complications) we
now examine application of the finite element method to a restricted class of
incompressible viscous flows.

The assumptions and restrictions applicable to the following developments
are

1. The flow can be considered two dimensional.
2. No heat transfer is involved.
3. Density and viscosity are constant.
4. The flow is steady with respect to time.

Under these conditions, the famed Navier-Stokes equations [4, 5], representing
conservation of momentum, can be reduced to [6]

� u
∂u

∂x
+ � v

∂u

∂y
− �

∂2u

∂x 2
− �

∂2u

∂y2
+ ∂p

∂x
= FBx

� u
∂v

∂x
+ � v

∂v

∂y
− �

∂2v

∂x 2
− �

∂2v

∂y2
+ ∂p

∂y
= FBy

(8.50)

where
u and v = x-, and y-velocity components, respectively

� = density of the fluid
p = pressure
� = absolute fluid viscosity

FBx , FBy = body force per unit volume in the x and y directions, respectively

Note carefully that Equation 8.50 is nonlinear, owing to the presence of the con-
vective inertia terms of the form � u(∂u/∂ x ). Rather than treat the nonlinear
terms directly at this point, we first consider the following special case.

8.5.1 Stokes Flow

For fluid flow in which the velocities are very small, the inertia terms (i.e., the
preceding nonlinear terms) can be shown to be negligible in comparison to the
viscous effects. Such flow, known as Stokes flow (or creeping flow), is commonly
encountered in the processing of high-viscosity fluids, such as molten polymers.
Neglecting the inertia terms, the momentum equations become

−�
∂2u

∂x 2
− �

∂2u

∂y2
+ ∂p

∂x
= FBx

−�
∂2v

∂x 2
− �

∂2v

∂y2
+ ∂p

∂y
= FBy

(8.51)
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Equation 8.51 and the continuity condition, Equation 8.8, form a system of
three equations in the three unknowns u(x, y), v(x, y), and p(x, y). Hence, a finite
element formulation includes three nodal variables, and these are discretized as

u(x , y) =
M∑

i=1

Ni (x , y)ui = [N ]T {u}

v(x , y) =
M∑

i=1

Ni (x , y)vi = [N ]T {v}

p(x , y) =
M∑

i=1

Ni (x , y) pi = [N ]T {p}

(8.52)

Application of Galerkin’s method to a two-dimensional finite element (assumed
to have uniform unit thickness in the z direction) yields the residual equations

∫

A(e)

Ni

(
−�

∂2u

∂x 2
− �

∂2u

∂y2
+ ∂p

∂x
− FBx

)
d A = 0

∫

A(e)

Ni

(
−�

∂2v

∂x 2
− �

∂2v

∂y2
+ ∂p

∂y
− FBy

)
d A = 0

∫

A(e)

Ni

(
∂u

∂x
+ ∂v

∂y

)
d A = 0

i = 1, M (8.53)

As the procedures required to obtain the various element matrices are covered in
detail in previous developments, we do not examine Equation 8.53 in its entirety.
Instead, only a few representative terms are developed and the remaining results
stated by inference.

First, consider the viscous terms containing second spatial derivatives of
velocity components such as

−
∫

A(e)

�Ni

(
∂2u

∂x 2
+ ∂2u

∂y2

)
d A i = 1, M (8.54)

which can be expressed as

−
∫

A(e)

�

[
∂

∂x

(
Ni

∂u

∂x

)
+ ∂

∂y

(
Ni

∂u

∂y

)]
d A +

∫

A(e)

�

(
∂ Ni

∂x

∂u

∂x
+ ∂ Ni

∂y

∂u

∂y

)
d A

i = 1, M (8.55)
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Application of the Green-Gauss theorem to the first integral in expression (8.55)
yields

−
∫

A(e)

�

[
∂

∂x

(
Ni

∂u

∂x

)
+ ∂

∂y

(
Ni

∂u

∂y

)]
d A = −

∫

S(e)

�Ni

(
∂u

∂x
nx + ∂u

∂y
n y

)
dS

i = 1, M (8.56)

where S(e) is the element boundary and (nx, ny) are the components of the unit
outward normal vector to the boundary. Hence, the integral in expression (8.54)
becomes

−
∫

A(e)

�Ni

(
∂2u

∂x 2
+ ∂2u

∂y2

)
d A = −

∫

S(e)

�Ni

(
∂u

∂x
nx + ∂u

∂y
n y

)
dS

+
∫

A(e)

�

(
∂ Ni

∂x

∂u

∂x
+ ∂ Ni

∂y

∂u

∂y

)
d A (8.57)

Note that the first term on the right-hand side of Equation 8.57 represents a nodal
boundary force term for the element. Such terms arise from shearing stress. As
we observed many times, these terms cancel on interelement boundaries and
must be considered only on the global boundaries of a finite element model.
Hence, these terms are considered only in the assembly step. The second integral
in Equation 8.57 is a portion of the “stiffness” matrix for the fluid problem, and
as this term is related to the x velocity and the viscosity, we denote this portion
of the matrix [ku�]. Recalling that Equation 8.57 represents M equations, the
integral is converted to matrix form using the first of Equation 8.52 to obtain

∫

A(e)

�

(
∂ [N ]T

∂x

∂ [N ]

∂x
+ ∂ [N ]T

∂y

∂ [N ]

∂y

)
d A {u} = [ku�]{u} (8.58)

Using the same approach with the second of Equation 8.53, the results are
similar. We obtain the analogous result

−
∫

A(e)

�Ni

(
∂2v

∂x 2
+ ∂2v

∂y2

)
d A = −

∫

S(e)

�Ni

(
∂v

∂x
nx + ∂v

∂y
n y

)
dS

+
∫

A(e)

�

(
∂ Ni

∂x

∂v

∂x
+ ∂ Ni

∂y

∂v

∂y

)
d A (8.59)

Proceeding as before, we can write the area integrals on the right as
∫

A(e)

�

(
∂ [N ]T

∂x

∂ [N ]

∂x
+ ∂ [N ]T

∂y

∂ [N ]

∂y

)
d A {v} = [kv�]{v} (8.60)
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Considering next the pressure terms and converting to matrix notation, the
first of Equation 8.53 leads to

∫

A(e)

[N ]T ∂ [N ]

∂x
d A {p} = [kpx ]{p} (8.61)

and similarly the second momentum equation contains

∫

A(e)

[N ]T ∂ [N ]

∂y
d A {p} = [kpy]{p} (8.62)

The nodal force components corresponding to the body forces are readily
shown to be given by

{ f Bx} =
∫

A(e)

[N ]T FBx d A

{ f By} =
∫

A(e)

[N ]T FBy d A
(8.63)

Combining the notation developed in Equations 8.58–8.63, the momentum equa-
tions for the finite element are

[ku�]{u} + [kpx ]{p} = { f Bx} + { fx� }
[kv�]{v} + [kpy]{p} = { f By} + { f y� }

(8.64)

where, for completeness, the nodal forces corresponding to the integrals over
element boundaries S(e) in Equations 8.57 and 8.59 have been included.

Finally, the continuity equation is expressed in terms of the nodal velocities
in matrix form as

∫

A(e)

[N ]T ∂ [N ]

∂x
d A{u} +

∫

A(e)

[N ]T ∂ [N ]

∂y
d A{v} = [ku]{u} + [kv]{v} = 0 (8.65)

where

[ku] = [kpx ] =
∫

A(e)

[N ]T ∂ [N ]

∂x
d A

[kv] = [kpy] =
∫

A(e)

[N ]T ∂ [N ]

∂y
d A

(8.66)

As formulated here, Equations 8.64 and 8.65 are a system of 3M algebraic equa-
tions governing the 3M unknown nodal values {u}, {v}, {p} and can be expressed
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formally as the system



[ku�] [0] [kpx ]
[0] [kv�] [kpy]
[ku] [kv] [0]









{u}
{v}
{p}




 =





{ fBx}
{ fBy}
{0}




 ⇒ [
k(e)] {

	(e)} = {
f (e)} (8.67)

where [k (e)] represents the complete element stiffness matrix. Note that the ele-
ment stiffness matrix is composed of nine M × M submatrices, and although the
individual submatrices are symmetric, the stiffness matrix is not symmetric.

The development leading to Equation 8.67 is based on evaluation of both
the velocity components and pressure at the same number of nodes. This is
not necessarily the case for a fluid element. Computational research [7] shows
that better accuracy is obtained if the velocity components are evaluated at
a larger number of nodes than pressures. In other words, the velocity compo-
nents are discretized using higher-order interpolation functions than the pres-
sure variable. For example, a six-node quadratic triangular element could be
used for velocities, while the pressure variable is interpolated only at the cor-
ner nodes, using linear interpolation functions. In such a case, Equation 8.66
does not hold.

The arrangement of the equations and associated definition of the element
stiffness matrix in Equation 8.67 is based on ordering the nodal variables as

{	}T = [u1 u2 u3 v1 v2 v3 p1 p2 p3]

(using a three-node element, for example). Such ordering is well-suited to illus-
trate development of the element equations. However, if the global equations for
a multielement model are assembled and the global nodal variables are similarly
ordered, that is,

{�}T = [U1 U2 · · · V1 V2 · · · P1 P2 · · · PN ]

the computational requirements are prohibitively inefficient, because the global
stiffness has a large bandwidth. On the other hand, if the nodal variables are
ordered as

{�}T = [U1 V1 P1 U2 V2 P2 · · · UN VN PN ]

computational efficiency is greatly improved, as the matrix bandwidth is signifi-
cantly reduced. For a more detailed discussion of banded matrices and associated
computational techniques, see [8].

Consider the flow between the plates of Figure 8.4 to be a viscous, creeping flow and
determine the boundary conditions for a finite element model. Assume that the flow is
fully developed at sections a-b and c-d and the constant volume flow rate per unit thick-
ness is Q.

EXAMPLE 8.3
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Figure 8.10
(a) Velocity of fully developed flow. (b) Boundary conditions.
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■ Solution
For fully developed flow, the velocity profiles at a-b and c-d are parabolic, as shown in
Figure 8.10a. Denoting the maximum velocities at these sections as Uab and Ucd , we have

u(xa , y) = Uab

(
1 − y2

y2
b

)

v(xa , y) = 0

u(xc , y) = Ucd

(
1 − y2

y2
b

)

v(xc , y) = 0

The volume flow rate is obtained by integrating the velocity profiles as

Q = 2

yb∫

0

u(xa , y) dy = 2

yd∫

0

u(xc , y) dy

Substituting the velocity expressions and integrating yields

Uab = 3Q

4yb
Ucd = 3Q

4yd

and thus the velocity components at all element nodes on a-b and c-d are known.



Hutton: Fundamentals of 
Finite Element Analysis

8. Applications in Fluid 
Mechanics

Text © The McGraw−Hill 
Companies, 2004

8.5 Incompressible Viscous Flow 321

Next consider the contact between fluid and plate along b-c. As in cases of inviscid
flow discussed earlier, we invoke the condition of impenetrability to observe that veloc-
ity components normal to this boundary are zero. In addition, since the flow is viscous,
we invoke the no-slip condition, which requires that tangential velocity components also
be zero at the fluid-solid interface. Hence, for all element nodes on b-c, both velocity
components ui and vi are zero.

The final required boundary conditions are obtained by observing the condition of
symmetry along a-d, where v = v(x , 0) = 0. The boundary conditions are summarized
next in reference to Figure 8.10b:

UI = Uab

(
1 − y2

I

y2
b

)
VI = 0 on S1 (a-b)

UI = Ucd

(
1 − y2

I

y2
d

)
VI = 0 on S2 (b-c)

UI = VI = 0 on S3 (c-d)

VI = 0 on S4 (a-d)

where I is an element node on one of the global boundary segments.
The system equations corresponding to each of the specified nodal velocities just

summarized become constraint equations and are eliminated via the usual procedures
prior to solving for the unknown nodal variables. Associated with each specified velocity
is an unknown “reaction” force represented by the shear stress-related forces in Equa-
tions 8.56, and these forces can be computed using the constraint equations after the
global solution is obtained. This is the case for all equations associated with element
nodes on segments S1, S2, and S3. On S4, the situation is a little different and additional
comment is warranted. As the velocity components in the x direction along S4 are not
specified, a question arises as to the disposition of the shear-related forces in the x direc-
tion. These forces are given by

fx � =
∫

S (e)

� Ni

(
∂u

∂ x
nx + ∂u

∂y
n y

)
dS

as embodied in Equation 8.57. On the boundary in question, the unit outward normal vec-
tor is defined by (nx , n y ) = (0, −1), so the first term in this integral is zero. In view of the
symmetry conditions about a-c, we also have ∂u/∂ y = 0, so the shear forces in the x
direction along S4 are also zero. With this observation and the boundary conditions, the
global matrix equations become a tractable system of algebraic equations that can be
solved for the unknown values of the nodal variables.

8.5.2 Viscous Flow with Inertia

Having discussed slow flows, in which the inertia terms were negligible, we now
consider the more general, nonlinear case. All the developments of the previous
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section on Stokes flow are applicable here; we now add the nonlinear terms aris-
ing from the convective inertia terms. From the first of Equation 8.50, we add a
term of the form

∫

A(e)

�

(
u

∂u

∂x
+ v

∂u

∂y

)
d A ⇒ �

∫

A(e)

(
[N ]{u}∂ [N ]

∂x
{u} + [N ]{v}∂ [N ]

∂y
{u}

)
d A

(8.68)

and from the second equation of 8.50,

∫

A(e)

�

(
u

∂v

∂x
+ v

∂v

∂y

)
d A ⇒ �

∫

A(e)

(
[N ]{u}∂ [N ]

∂x
{v} + [N ]{v}∂ [N ]

∂y
{v}

)
d A

(8.69)

As expressed, Equation 8.68 is not conformable to matrix multiplication, as in
being able to write the expression in the form [k]{u}, and this is a direct result of
the nonlinearity of the equations. While a complete treatment of the nonlinear
equations governing viscous fluid flow is well beyond the scope of this text, we
discuss an iterative approximation for the problem. 

Let us assume that for a particular two-dimensional geometry, we have
solved the Stokes (creeping) flow problem and have all the nodal velocities of the
Stokes flow finite element model available. For each element in the finite ele-
ment model, we denote the Stokes flow solution for the average velocity compo-
nents (evaluated at the centroid of each element) as (ū , v̄); then, we express the
approximation for the inertia terms (as exemplified by Equation 8.69) as

∫

A(e)

�

(
u

∂u

∂x
+ v

∂u

∂y

)
d A =

∫

A(e)

�

(
ū

∂ [N ]

∂x
+ v̄

∂ [N ]

∂y

)
d A{u} = [kuv]{u}

(8.70)

Similarly, we find the y-momentum equation contribution to be 

∫

A(e)

�

(
u

∂v

∂x
+ v

∂v

∂y

)
d A =

∫

A(e)

�

(
ū

∂ [N ]

∂x
+ v̄

∂ [N ]

∂y

)
d A{v} = [kvu]{v}

(8.71)

Equations 8.70 and 8.71 refer to an individual element. The assembly procedures
are the same as discussed before; now we add additional terms to the stiffness
matrix as a result of inertia. These terms are readily identifiable in Equations 8.70
and 8.71. In the viscous inertia flow, the solution requires iteration to achieve sat-
isfactory results. The use of the Stokes flow velocities and pressures represent
only the first iteration (approximation). At each iteration, the newly computed
velocity components are used for the next iteration.
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For both creeping flow and flow with inertia, the governing equations can also
be developed in terms of a stream function [3]. However, the resulting (single)
governing equation in each case is found to be fourth order. Consequently, ele-
ments exhibiting continuity greater than C0 are required.

8.6 SUMMARY
Application of the finite element method to fluid flow problems is, in one sense,
quite straightforward and, in another sense, very complex. In the idealized cases
of inviscid flow, the finite element problem is easily formulated in terms of a sin-
gle variable. Such problems are neither routine nor realistic, as no fluid is truly
without viscosity. As shown, introduction of the very real property of fluid vis-
cosity and the historically known, nonlinear governing equations of fluid flow
make the finite element method for fluid mechanics analysis difficult and cum-
bersome, to say the least.

The literature of fluid mechanics is rife with research results on the applica-
tion of finite element methods to fluid mechanics problems. The literature is so
voluminous, in fact, that we do not cite references, but the reader will find that
many finite element software packages include fluid elements of various types.
These include “pipe elements,” “acoustic fluid elements,” and “combination
elements.” The reader is warned to be aware of the restrictions and assumptions
underlying the “various sorts” of fluid elements available in a given software
package and use care in application.
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PROBLEMS
8.1 Per the standard definition of viscosity described in Section 8.1, how would you

describe the property of viscosity, physically, in terms of an everyday example
(do not use water and molasses—I already used that example)?

8.2 How would you design an experiment to determine the relative viscosity
between two fluids? What fluids might you use in this test?

8.3 Look into a fluid mechanics text or reference book. What is the definition of a
Newtonian fluid?

8.4 Equation 8.5 is a rather complicated partial differential equation, what does
it really mean? Explain how that equation takes the very simple form of
Equation 8.6.

8.5 If you visually examine a fluid flow, could you determine whether it was
rotational or irrotational? Why? Why not?

8.6 Why do we use the Green-Gauss theorem in going from Equation 8.16 to
Equation 8.17? Refer to Chapter 5.

8.7 Recalling that Equation 8.21 is based on unit depth in a two-dimensional flow,
what do the nodal forces represent physically?

8.8 Given the three-node triangular element shown in Figure P8.8, compute the
nodal forces corresponding to the flow conditions shown, assuming unit depth
into the plane.

Figure P8.8

8.9 Per Equation 8.32, how do the fluid velocity components vary within
a. A linear, three-node triangular element.
b. A four-node rectangular element.
c. A six-node triangular element.
d. An eight-node rectangular element.
e. Given questions a–d, how would you decide which element to use in a finite

element analysis?
8.10 We show, in this chapter, that both stream function and velocity potential

methods are governed by Laplace’s equation. Many other physical problems
are governed by this equation. Consult mathematical references and find
other applications of Laplace’s equation. While you are at it (and learning

1 (0, 0)
2

3
(0, 1)

(1, 0)U
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the history of our profession is part of becoming an engineer), find out
about Laplace.

8.11 Consider the uniform (ideal) flow shown in Figure P8.11. Use the four
triangular elements shown to compute the stream function and derive the
velocity components. Note that, in this case, if you do not obtain a uniform
flow field, you have made errors in either your formulation or your calculations.
The horizontal boundaries are to be taken as fixed surfaces. The coordinates of
node 3 are (1.5, 1).

Figure P8.11

8.12 Now repeat Problem 8.11 with the inlet flow shown in Figure P8.12. Does the
basic finite element formulation change? Do you have to redefine geometry or
elements? Your answer to this question will give you insight as to how to use
finite element software. Once the geometry and elements have been defined,
various problems can be solved by simply changing boundary conditions or
forcing functions.

Figure P8.12

8.13 Consider the flow situation depicted in Figure P8.13. Upstream, the flow is
uniform. At a known point between the two solid walls, a source of constant
strength Q (volume per unit time) exists (via the action of a pump for example).
How would the source be accounted for in a finite element formulation?
(Examine the heat transfer analogy.)
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Figure P8.13

8.14 Reconsider Example 8.1 and assume the cylinder is a heating rod held at constant
surface temperature T0. The uniform inlet stream is at known temperature
Ti < T0 . The horizontal boundaries are perfectly insulated and steady-state
conditions are assumed. In the context of finite element analysis, can the flow
problem and the heat transfer problem be solved independently?
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