
Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

Part I
INTRODUCTION

Fuzziness is not a priori an obvious concept and demands some explana-
tion. “Fuzziness” is what Black (NF 1937) calls “vagueness”† when he
distinguishes it from “generality” and from “ambiguity.” Generalizing
refers to the application of a symbol to a multiplicity of objects in the field
of reference, ambiguity to the association of a finite number of alternative
meanings having the same phonetic form. But, the fuzziness of a symbol
lies in the lack of well-defined boundaries of the set of objects to which
this symbol applies.

More specifically, let X be a field of reference, also called a universe of
discourse or universe for short, covering a definite range of objects.
Consider a subset Ã where transition between membership and nonmem-
bership is gradual rather than abrupt. This “fuzzy subset” obviously has no
well-defined boundaries. Fuzzy classes of objects are often encountered in
real life. For instance, Ã may be the set of tall men in a community X.
Usually, there are members of X who are definitely tall, others who are
definitely not tall, but there exist also borderline cases. Traditionally, the
grade of membership 1 is assigned to the objects that completely belong to
Ã—here the men who are definitely tall; conversely the objects that do not
belong to Ã at all are assigned a membership value 0. Quite naturally, the
grades of membership of the borderline cases lie between 0 and 1. The

† However, it must be noticed that Zadeh (1977a) [Reference from IV.2] has used the word
“vagueness” to designate the kind of uncertainty which is both due to fuzziness and
ambiguity.
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more an element or object x belongs to Ã, the closer to 1 is its grade of
membership µ

Ã
(x). The use of a numerical scale such as the interval [0, 1]

allows a convenient representation of the gradation in membership. Precise
membership values do not exist by themselves, they are tendency indices
that are subjectively assigned by an individual or a group. Moreover, they
are context-dependent. The grades of membership reflect an “ordering” of
the objects in the universe, induced by the predicate associated with Ã; this
“ordering,” when it exists, is more important than the membership values
themselves. The membership assessment of objects can sometimes be made
easier by the use of a similarity measure with respect to an ideal element.
Note that a membership value µ

Ã
(x) can be interpreted as the degree of

compatibility of the predicate associated with Ã and the object x. For
concepts such as “tallness,” related to a physical measurement scale, the
assignment of membership values will often be less controversial than for
more complex and subjective concepts such as “beauty.”

The above approach, developed by Zadeh (1964), provides a tool for
modeling human-centered systems (Zadeh, 1973). As a matter of fact,
fuzziness seems to pervade most human perception and thinking processes.
Parikh (1977) has pointed out that no nontrivial first-order-logic-like
observational predicate (i.e., one pertaining to perception) can be defined
on an observationally connected space;† the only possible observational
predicates on such a space are not classical predicates but “vague” ones.
Moreover, according to Zadeh (1973), one of the most important facets of
human thinking is the ability to summarize information “into labels of
fuzzy sets which bear an approximate relation to the primary data.”
Linguistic descriptions, which are usually summary descriptions of com-
plex situations, are fuzzy in essence.

It must be noticed that fuzziness differs from imprecision. In tolerance
analysis imprecision refers to lack of knowledge about the value of a
parameter and is thus expressed as a crisp tolerance interval. This interval
is the set of possible values of the parameters. Fuzziness occurs when the
interval has no sharp boundaries, i.e., is a fuzzy set Ã. Then, µ

Ã
(x) is

interpreted as the degree of possibility (Zadeh, 1978) that x is the value of
the parameter fuzzily restricted by Ã.

The word fuzziness has also been used by Sugeno (1977) in a radically
different context. Consider an arbitrary object x of the universe X; to each
nonfuzzy subset A of X is assigned a value g

x
(A) [ [0, 1] expressing the

† Let α > 0. A metric space is α-connected if it cannot be split into two disjoint nonempty
ordinary subsets A and B such that ;x [ A, ;y [ B, d(x, y) > α, where d is a distance. A
metric space is observationally connected if it is α-connected for some α smaller than the
perception threshold.
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“grade of fuzziness” of the statement “x belongs to A.” In fact this grade
of fuzziness must be understood as a grade of certainty: according to the
mathematical definition of g, g

x
(A) can be interpreted as the probability,

the degree of subjective belief, the possibility, that x belongs to A.
Generally, g is assumed increasing in the sense of set inclusion, but not
necessarily additive as in the probabilistic case. The situation modeled by
Sugeno is more a matter of guessing whether x [ A rather than a problem
of vagueness in the sense of Zadeh. The existence of two different points of
view on “fuzziness” has been pointed out by MacVicar-Whelan (1977) and
Skala (Reference from III.1). The monotonicity assumption for g seems to
be more consistent with human guessing than does the additivity assump-
tion. Moreover, grades of certainty can be assigned to fuzzy subsets Ã of X
owing to the notion of a fuzzy integral (see II.5.A.b). For instance, seeing a
piece of Indian pottery in a shop, we may try to guess whether it is genuine
or counterfeit; obviously, genuineness is not a fuzzy concept. x is the
Indian pottery; A is the crisp set of genuine Indian artifacts; and g

x
(A)

expresses, for instance, a subjective belief that the pottery is indeed
genuine. The situation is slightly more complicated when we try to guess
whether the pottery is old: actually, the set Ã of old Indian pottery is fuzzy
because “old” is a vague predicate.

It will be shown in III.1 that the logic underlying fuzzy set theory is
multivalent. Multivalent logic can be viewed as a calculus either on the
level of credibility of propositions or on the truth values of propositions
involving fuzzy predicates. In most multivalent logics there is no longer an
excluded-middle law; this situation may be interpreted as either the ab-
sence of decisive belief in one of the sides of an alternative or the
overlapping of antonymous fuzzy concepts (e.g., “short” and “tall”).

Contrasting with multivalent logics, a fuzzy logic has been recently
introduced by Bellman and Zadeh (Reference from III.1). “Fuzzy logic
differs from conventional logical systems in that it aims at providing a
model for approximate rather than precise reasoning.” In fuzzy logic what
matters is not necessarily the calculation of the absolute (pointwise) truth
values of propositions; on the contrary, a fuzzy proposition induces a
possibility distribution over a universe of discourse. Truth becomes a
relative notion, and “true,” is a fuzzy predicate in the same sense as, for
instance, “tall.”

As an example, consider the proposition “John is a tall man.” It can be
understood in several ways. First, if the universe is a set of men including
John and the set of tall men is a known fuzzy set Ã, then the truth-value of
the proposition “John is a tall man” is µ

Ã
(John). Another situation consists

in guessing whether John, about whom only indirect information is avail-
able, is a tall man; the degree of certainty of the proposition is expressed
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by g
John

(Ã). In contrast, in fuzzy logic we take the proposition “John is a
tall man” as assumed, and we are interested in determining the informa-
tion it conveys. “Tall” is then in a universe of heights a known fuzzy set
that fuzzily restricts John’s height. In other words, “John is a tall man”
translates into a possibility  distribution p = µ

tall
. Then µ

tall
(h) gives a value

to the possibility that John’s height is equal to h. The possibility that
John’s height lies in the interval [a, b] is easily calculated as

g
John

([ a, b ]) =  sup µ
tall

(h),
a < h < b

as explained in II.5.B. It can also be verified, using a fuzzy integral, that
g

John
(tall) = 1, when “tall” is normalized (see II.1.A). This is consistent

with taking the proposition “John is a tall man” as assumed.
One of the appealing features of fuzzy logic is its ability to deal with

approximate causal inferences. Given an inference scheme “if P, then Q”
involving fuzzy propositions, it is possible from a proposition P′ that
matches only approximately P, to deduce a proposition Q′ approximately
similar to Q, through a logical interpolation called “generalized modus
ponens.” Such an inference is impossible in ordinary logical systems.

APPENDIX: SOME HISTORICAL AND BIBLIOGRAPHICAL REMARKS

Fuzzy set theory was initiated by Zadeh in the early 1960s (1964; see
also Bellman el al., 1964). However, the term ensemble flou (a posteriori the
French counterpart of fuzzy set) was coined by Menger (1951) in 1951.
Menger explicitly used a “max-product” transitive fuzzy relation (see
II.3.B.c.β), but with a probabilistic interpretation. On a semantic level
Zadeh’s theory is more closely related to Black’s work on vagueness
(Black, NF 1937), where “consistency profiles” (the ancestors of fuzzy
membership functions) “characterize vague symbols.”

Since 1965, fuzzy set theory has been considerably developed by Zadeh
himself and some 300 researchers. This theory has begun to be applied in a
wide range of scientific areas.

There have already been two monographs on fuzzy set theory published:
a tutorial treatise in several volumes by Kaufmann (1973, 1975a, b, 1977;
and others in preparation) and a mathematically oriented concise book by
Negoita and Ralescu (1975). There are also two collections of papers
edited by Zadeh et al. (1975) and Gupta et al. (1977).

Apart from Zadeh’s excellent papers, other introductory articles are
those of Gusev and Smirnova (1973), Ponsard (Reference from II.1),
Ragade and Gupta (Reference from II.1), and Kandel and Byatt (1978).
Rationales and discussions can also be found in Chang (1972), Ponsard
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(1975), Sinaceur (1978), Gale (1975), Watanabe (1969, 1975), and Aizer-
man (1977).

Several bibliographies on fuzzy sets are available in the literature,
namely, those of De Kerf (1975), Kandel and Davis (1976), Gaines and
Kohout (1977), and Kaufmann (1979).
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Part II
MATHEMATICAL TOOLS

This part is devoted to an extensive presentation of the mathematical
notions that have been introduced in the framework of fuzzy set theory.

Chapter 1 provides the basic definitions of various kinds of fuzzy sets,
set-theoretic operations, and properties. Lastly, measures of fuzziness are
described.

Chapter 2 introduces a very general principle of fuzzy set theory: the
so-called extension principle. It allows one to “fuzzify” any domain of
mathematics based on set theory. This principle is then applied to alge-
braic operations and is used to define set-theoretic operations for higher
order fuzzy sets.

Chapter 3 develops the extensive theory of fuzzy relations.
Chapter 4 is a survey of different kinds of fuzzy functions. The extre-

mum over a fuzzy domain and integration and differentiation of fuzzy
functions of a real variable are emphasized. Fuzzy topology is also out-
lined. Categories of fuzzy objects are sketched.

Chapter 5 presents Sugeno’s theory of fuzzy measures. In this chapter
the link between such topics as probabilities, possibilities, and belief
functions is pointed out.
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Chapter 1
FUZZY SETS

This chapter deals with naïve set theory when membership is no longer
an all-or-nothing notion. There is no unique way to build such a theory.
But, all the alternative approaches presented here include ordinary set
theory as a particular case. However, Zadeh’s fuzzy set theory may appear
to be the most intuitive among them, although such concepts as inclusion
or set equality may seem too strict in this particular framework—many
relaxed versions exist as will be shown. Usually the structures embedded in
fuzzy set theories are less rich than the Boolean lattice of classical set
theory. Moreover, there is also some arbitrariness in the choice of the
valuation set for the elements: the real interval [0, 1] is the most commonly
used, but other choices are possible and even worth considering: these are
summarized under the label “L-fuzzy sets.” Fuzzy structured sets, such as
fuzzy groups and convex fuzzy sets, are also presented. Lastly, a survey of
scalar measures of fuzziness is provided.

A.   DEFINITIONS

Let X be a classical set of objects, called the universe, whose generic
elements are denoted x. Membership in a classical subset A of X is often

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade
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viewed as a characteristic function , m
A
 from X to {0, 1} such that

µ A x( ) =
1

0




    
iff

iff
    

x ∈A,

x ∉A.

(N.B.:   “iff” is short for “if and only if.”)
{0, 1} is called a valuation set.

If the valuation set is allowed to be the real interval [0, 1], A is called a
fuzzy set (Zadeh, 1965). m

A
(x) is the grade of membership of x in A. The

closer the value of m
A
(x) is to 1, the more x belongs to A. Clearly, A is a

subset of X that has no sharp boundary.
A is completely characterized by the set of pairs

A = x,  µ A x( )( ),  x ∈X{ }. (1)

A more convenient notation was proposed by Zadeh (Reference from II.2,
1972). When X is a finite set {x

1
, . . . , x

n
}, a fuzzy set on X is expressed as

  

A = µA x1( ) / x1 + L + µA xn( ) / xn = µA xi( ) / xi

i=1

n

∑ . (2)

When X is not finite, we write

A = µA x( ) / x.
X∫ (3)

Two fuzzy sets A and B are said to be equal (denoted A = B) iff

∀ x ∈X, µ A x( ) = µ B x( ).
Remarks 1   A fuzzy set is actually a generalized subset of a classical set,

as pointed out by Kaufmann. However, we keep the term “fuzzy set” for
the sake of convenience.

2   What we call a universe is never fuzzy.

The support of a fuzzy set A is the ordinary subset of X:

supp A = x ∈X, µ A x( ) > 0{ }.

The elements of x such that µ A x( ) = 1

2
 are the crossover points of A. The

height of A is hgt(A) = supx ∈Xµ A x( ) , i.e., the least upper bound of m
A
(x).

A is said to be normalized iff ∃ x ∈X , m
A
(x) = 1; this definition implies

hgt(A) = 1. The empty set Ø is defined as ∀ x ∈X,m
Ø
(x) = 0; of course,

;x, m
X
(x) = 1.

N.B.:   Elements with null membership can be omitted in Eq. (2). Using
this convention, (2) can be extended to represent finite support fuzzy sets.



11

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

II.1.  Fuzzy Sets

Examples 1   X = N = {positive integers}. Let

A = 0.1 / 7 + 0.5 / 8 + 0.8 / 9 + 1.0 / 10 + 0.8 / 11 + 0.5 / 12 + 0.1 / 13.

A is a fuzzy set of integers approximately equal to 10.
2   X = R = {real numbers}. Let

  

µ A x( ) = 1

1+ 1
5

x−10



[ ]2 ,         i.e.,         A =

1

1+ 1
5

x−10



[ ]2

R∫ / x.

A is a fuzzy set of real numbers clustered around 10.

B.   SET-THEORETIC OPERATIONS

a.   Union and Intersection of Fuzzy Sets

The classical union (<) and intersection (>) of ordinary subsets of X
can be extended by the following formulas, proposed by Zadeh (1965):

∀ x ∈ X,     µ A∪B x( ) = max µ A x( ),  µ B x( )( ), (4)

∀ x ∈ X,     µ A∩B x( ) = min µ A x( ),  µ B x( )( ), (5)

where m
A < B

 and m
A > B

 are respectively the membership functions of A < B
and A > B.

These formulas give the usual union and intersection when the valuation
set is reduced to {0, 1}. Obviously, there are other extensions of < and >
coinciding with the binary operators.

A justification of the choice of max and min was given by Bellman and
Giertz (1973): max and min are the only operators f and g that meet the
following requirements:

(i) The membership value of x in a compound fuzzy set depends on the
membership value of x in the elementary fuzzy sets that form it, but
not on anything else:

∀ x ∈X,    µ A∪B x( ) = f µ A x( ),  µB x,( )( )
                 µ A∩B x( ) = g µ A x( ),  µB x( )( ).

(ii) f and g are commutative, associative, and mutually distributive
operators.
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(iii) f and g are continuous and nondecreasing with respect to each of
their arguments. Intuitively, the membership of x in A < B or
A > B cannot decrease when the membership of x in A or B
increases. A small increase of m

A
(x) or m

B
(x) cannot induce a strong

increase of m
A < B

(x) or m
A > B

(x).
(iv) f(u, u) and g(u, u) are strictly increasing. If m

A
(x

1
) = m

B
(x

1
) > m

A
(x

2
)

= m
B
(x

2
), then the membership of x

1
 in A < B or A > B is certainly

strictly greater than that of x
2
.

(v) Membership in A > B requires more, and membership in A < B
less, than the membership in one of A or B:

∀ x ∈X,    µ A ∩ B x( )  < min µ A x( ),  µ B x( )( ),
µ A ∪ B x( )  > max µ A x( ),  µ B x( )( ).

(vi) Complete membership in A and in B implies complete membership
in A > B. Complete lack of membership in A and in B implies
complete lack of membership in A < B:

g(1, 1) = 1,         f (0, 0) = 0.

The above assumptions are consistent and sufficient to ensure the
uniqueness of the choice of union and intersection operators.

Fung and Fu (1975) also found max and min to be the only possible
operators. They use a slightly different set of assumptions. They kept (i)
and added the following:

(ii ′) f and g are commutative, associative, and idempotent.
(iii ′) f and g are nondecreasing.
(vii) f and g can be recursively extended to m > 3 arguments.
(viii) ;x [ X, f(1, m

A
(x)) = 1, g(0, m

A
(x)) = 0.

The interpretation of these axioms was given in the framework of group
decision-making with a slightly more general valuation set (see IV.3.C).

b.   Complement of a Fuzzy Set

The complement A  of A is defined by the membership function (Zadeh,
1965)

∀ x ∈ X,    µ
A

x( ) = 1 − µ A x( ). (6)

The justification of (6) is more difficult than that of (4) and (5). Natural
conditions to impose on a complementation function h were proposed by
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Bellman and Giertz (1973):
(i) µ

A
(x) depends only on µ A (x): µ

A
(x) = h( µ A (x)).

(ii) h(0) = 1 and h(1) = 0, to recover the usual complementation when
A is an ordinary subset.

(iii) h is continuous and strictly monotonically decreasing, since mem-

bership in A  should become smaller when membership in A in-
creases.

(iv) h is involutive: h(h( µ
A
(x))) = µ A (x).

The above assumptions do not determine h uniquely, not even if we

require in addition h( 1
2
) = 1

2
. However, h(u) = 1 – u if we introduce the

following fifth requirement (Gaines, Reference from III.1, 1976b):

(v) ;x
1
 [ X, ;x

2
 [ X, if µ A (x

1
) + µ A (x

2
) = 1, then µ

A
(x

1
) + µ

A
(x

2
) = 1.

Instead of (v), Bellman and Giertz have proposed the following very
strong condition:

(vi) ;x
1
 [ X, ;x

2
 [ X, µ A (x

1
) – µ A (x

2
) = µ

A
(x

2
) – µ

A
(x

1
), which

means that a certain change in the membership value in A should

have the same effect on the membership in A .

(i), (ii), and (vi) entail h(u) = 1 – u.

However, there may be situations where (v) or (vi) may appear to be not
really necessary assumptions. Sugeno (Reference from II.5, 1977) defines

the λ-complement A λ  of A

µ
Aλ x( ) = 1− µ A x( )( ) 1+ λµ A x( )( ),         λ ∈] −1,+ ∞) (7)

λ-complementation satisfies (i), (ii), (iii), and (iv).
Lowen (1978) has developed a more general approach to the comple-

mentation of a fuzzy set in the framework of category theory.

When A is an ordinary subset of X, the pair (A, A ) is a partition of X
provided that A ≠ Ø and A ≠ X. When A is a fuzzy set (≠ Ø, ≠ X), the

pair (A, A ) is called a fuzzy partition; more generally an m-tuple
(A

1
, . . . , A

m
) of fuzzy sets (;i, A

i
 ≠ Ø and A

i
 ≠ X) such that

∀ x ∈ X, µ Ai
x( ) = 1

i=1

m

∑     (orthogonality) (8)

is still called a fuzzy partition of X (Ruspini, Rerence from IV.6, 1969).
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c.   Extended Venn Diagram

Venn diagrams in the sense of ordinary subsets no longer exist for fuzzy
sets. Nevertheless, Zadeh (1965) and Kaufmann (1975) use the graph of m

A

as a representation in order to visualize set-theoretic operators, as in Fig. 1.

Figure 1

d.   Structure ot the Set of Fuzzy Subsets of X

Let 3(X) be the set of ordinary subsets of X. 3(X) is a Boolean lattice
for < and >.

Let us recall some elementary definitions from lattice theory. A set L
equipped with a partial ordering (reflexive and transitive relation <) is a
lattice iff

∀ a ∈L, ∀ b ∈L,
∃!c ∈L, c = inf a,b( ),
∃!d ∈L, d = sup a,b( ).





inf and sup mean respectively greatest lower bound and least upper bound.
'! is short for there exists one and only one.
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L is complemented iff
'0 [ X,    '1 [ X,   ;a [ L,   ' a  [ L,

inf(a, a ) = 0    and    sup(a, a ) = 1
and    a  ≠ 0 if    a ≠ 1,   a  ≠ 1   if   a ≠ 0.

0 and 1 are respectively the least and the greatest element of L. (;a [ L,
inf(a, 0) = 0, sup(a, 1) = 1). A lattice with a 0 and a 1 is a complete lattice.
L is distributive iff sup and inf are mutually distributive.

A complemented distributive lattice is said to be Boolean. In a Boolean
lattice the complement a  of a is unique.

The structure of 3(X) may be viewed as induced from that of {0, 1},
which is a trivial case of a Boolean lattice.

Let ~3(X) be the set of fuzzy subsets of X. Its structure can be induced
from that of the real interval [0, 1]. [0, 1] is a pseudocomplemented distribu-
tive lattice where max and min play the role of sup and inf, respectively.
The pseudocomplementation is complementation to 1. It is not a genuine
complementation. ~3(X), considered as the set of mappings from X to [0, 1],
is thus also a pseudocomplemented distributive lattice. More particularly,
we have the following properties for <, >, and #:

(a) Commutativity:   A < B = B < A; A > B = B > A.
(b) Associativity:   A < (B < C) = (A < B) < C, A > (B > C) =

(A > B) > C.
(c) Idempotency:   A < A = A, A > A = A.
(d) Distributivity:   A < (B > C) = (A < B) > (A < C), A > (B < C)

= (A > B) < (A > C).
(e) A > Ø = Ø, A < X = X.
(f) Identity:   A < Ø = A, A > X = A.
(g) Absorption:   A < (A > B) = A, A > (A < B) = A.

(h) De Morgan’s laws:   A ∩ B( )  = A  < B , A ∪ B( )  = A  > B .

(i) Involution:   A  = A.

(j) Equivalence formula:   (A  < B) > (A < B ) = ( A  > B ) < (A > B).
(k) Symmetrical difference formula:

( A  > B) < (A > B ) = ( A  < B ) > (A < B).

N.B.:   λ-complementation is also involutive and satisfies De Morgan’s
laws.

The only law of ordinary fuzzy set theory that is no longer true is the
excluded-middle law:

A ∩ A ≠ Ø, A ∪ A ≠ X.

The same holds for the λ-complementation.
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Since the fuzzy set A has no definite boundary and neither has A , it may
seem natural that A and A  overlap. However, the overlap is always limited,
since

∀ A, ∀ x, min µ A x( ), µ
A

x( )( )  < 1
2 .

For the same reason, A < A  do not exactly cover X; however, ;A, ;x,

max µ A x( ), µ
A

x( )( )  > 1
2 .

For example, if X is a set of colored objects, and A is the subset of red
ones, m

A
(x) measures the degree of redness of x. A pink object has a

membership value close to 1
2 , and thus belongs nearly equally to A and A .

N.B.:   A Zermelo-Fraenkel-like axiomatization, formulated in ordinary
first-order logic with equality, was first investigated by Netto (1968), and
completely developed by Chapin (1974). In this approach fuzzy sets are
built ab initio, without viewing them as a superstructure of a predeter-
mined theory of ordinary sets. The only primitive relation used in the
theory is a ternary relation, interpreted as a membership relation. There
are 14 axioms, some of which have a strongest version. However, as
pointed out by Goguen (1974), the difficulty with such a theory is in
showing that its only model is in fact the universe of fuzzy sets. Goguen, to
cope with this flaw, sets forth axioms for fuzzy sets in the framework of
category theory.

e.   Alternative Operators on ~~ ~~ ~3(X)

Other operators can be defined for union and intersection. First, there
are the following probabilisticlike operators:

Intersection,

∀ x ∈ X, µ A ⋅ B x( ) = µ A x( ) ⋅ µ B x( ) product( ); (9)

Union,

∀ x ∈ X, µ
A +̂ B

x( ) = µ A x( ) + µ B x( ) − µ A x( ) ⋅ µ B x( )
(probabilistic sum). (10)

Under these operators and the usual pseudocomplementation, ~3(X) is only
a pseudocomplemented nondistributive structure. More particularly, +
and • satisfy only commutativity, associativity, identity, De Morgan’s laws,
and A • Ø = Ø, A + X = X. Such operators reflect a trade-off between A
and B, and are said to be interactive, as opposed to min and max. Using
these latter operators, a modification of A (or B) does not necessarily
imply an alteration of A > B or A < B. > and < are said to be nonin-
teractive.

Second, let . be the bounded sum operator (according to Zadeh, also
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called bold union by Giles (1976)),

∀ x ∈ X,   m
A . B

x( ) = min 1, µ A x( ) + µ B x( )( ); (11)

and let , be the associated operator called bold intersection,

∀ x ∈ X,   m
A , B

x( ) = max 0, µ A x( ) + µ B x( ) − 1( ). (12)

With ., ,, and the usual pseudocomplementation, ~3(X) is a comple-
mented nondistributive structure. More particularly, idempotency, distrib-
utivity, and absorption are no longer valid, but commutativity, associativ-
ity, identity, De Morgan’s laws, A , Ø = Ø, A . X = X, and even exclud-
ed-middle laws are satisfied. In this set theory A  is the real complement of
A (see Giles, 1976).

A fuzzy partition in the sense of Eq. (8) is an ordinary partition in the
sense of . and ,:

∀ x ∈X, µ Ai
x( ) = 1

i=1

m

∑





implies

A1∪⋅ A2 ∪⋅ ⋅ ⋅ ⋅ ∪⋅ Am = X,

∀ i ≠ j, Ai ∩⋅ Aj = Ø.




The converse is false for m > 2. A partition in the sense of . and , is
more general than a fuzzy partition.

The existence of the excluded-middle law is consistent with a situation in
which an experiment is made whose result can be modeled as a fuzzy set
A: A , A  = Ø means that a given event cannot happen at the same time as
the complementary one. Nevertheless, a complete interpretation of the
operators . and , has not yet been provided.

Lastly, let us notice that the following properties hold. Writing

A . A . • • • . A (m times) = . mA

and

A , A , • • • , A (m times) = , mA,

∀ x, µ
∪⋅ m A

x( ) = min 1, mµ A x( )( ),     µ
∩⋅ m A

x( ) = max 0, mµ A x( ) − m+1( )
so that

lim
m→∞

µ
∪⋅ m A

x( ) = 1 iff µ A x( ) ≠ 0,

lim
m→∞

µ
∩⋅ m A

x( ) = 0 iff µ A x( ) ≠ 1.

More details on the above operators ( . and ,) and the three lattice
structures (~3(X), <, >), (~3(X), +, • ), (~3(X), ., ,) are provided in Sec-
tion E.

N.B.:   The aforementioned intersection operators min(a, b), a • b,
max(0, a + b – 1), are known to be triangular norms: A triangular norm T
is a 2-place function from [0, 1] × [0, 1] to [0, 1] that satisfies the following
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conditions (Schweizer & Sklar, NF 1963):

(i) T(0, 0) = 0; T(a, 1) = T(1, a) = a;
(ii) T(a, b) < T(c, d) whenever a < c, b < d;
(iii) T(a, b) = T(b, a);
(iv) T(T(a, b), c) = T(a, T(b, c)).

Moreover, every triangular norm satisfies the inequality

Tw a, b( )  < T a, b( ) < min a, b( )
where

Tw a, b( ) =
a if b = 1

b if a = 1

0 otherwise







The crucial importance of min(a, b), a • b, max(0, a + b – 1) and T
W
(a, b)

is emphasized from a mathematical point of view in Ling (NF 1965)
among others.

f.   More Operators

Some other operators are often used in the literature:

Bounded difference –  (Zadeh, Reference from II.3, 1975a)

∀ x ∈X, µ
A – B

x( ) = max 0, µ A x( ) − µB x( )( ). (13)

A –  B is the fuzzy set of elements that belong to A more than to B. It

extends the classical A – B.
Symmetrical differences:   In the framework of fuzzy set theory there

may be different ways to define a symmetrical difference. First, the fuzzy
set A,B of elements that belong more to A than to B or conversely is
defined as

∀ x ∈X, µ A∇ B x( ) = µ A x( ) − µB x( ) . (14)

, is not associative
Secondly, the fuzzy set AnB of the elements that approximately belong

to A and not to B or conversely to B and not to A is defined as

∀ x ∈X, µ A∆ B x( )
     = max min µ A x( ),1− µB x( )( ), min 1− µ A x( ), µB x( )( )[ ]. (15)

It can be shown that n is associative; moreover,

AnBnC = ( A  > B  > C) < ( A  > B > C ) < (A > B  > C ) < (A > B > C).

mth power of a fuzzy set:   Am is defined as (Zadeh, Reference from II.2,
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µ
Am x( ) = µ A x( )[ ]m ∀ x ∈X, ∀ m ∈ R+. (16)

This operator will be used later to model linguistic hedges (see IV.2.B.b).
Let us notice that the mth power and the probabilistic sum of m

identical fuzzy sets have the same behavior as ,m and .m, respectively.
Convex linear sum of min and max. A combination of fuzzy sets A and

B that is intermediary between A > B and A < B is A||λB such that

∀λ ∈ 0,1[ ], ∀ x ∈X, µ A||λ B x( )
= λ min µ A x( ), µB x( )( ) + 1− λ( )max µ A x( ), µB x( )( ).

||λ is commutative and idempotent, but not associative. It is distributive on

> and <, but not on ||
1–λ except when λ ∈ 0, 1

2
,1{ }. Moreover, A ||λ B

= A ||1–λ B ∀ A, B ∈ ~3(X).

Other formulas for intersection were suggested by Zimmermann (Ref-
erence from IV.1) after experimental studies: the arithmetic mean and
geometric mean of membership values. (See also Rödder, Reference from
IV.1.) The former does not yield an intersection for classical sets.

C.   α-Cuts

When we want to exhibit an element x [ X that typically belongs to a
fuzzy set A, we may demand its membership value to be greater than some
threshold α []0, 1]. The ordinary set of such elements is the α-cut Aα of A,
Aα = {x [ X, m

A
(x) > α}. One also defines the strong α-cut Aα  = { x [ X,

m
A
(x) > α}.
The membership function of a fuzzy set A can be expressed in terms of

the characteristic functions of its α-cuts according to the formula

µ A x( ) =
α ∈]0, 1]
sup min α , µ Aα , x( )( ),

where

µ Aα x( ) =
1 iff x ∈Aα ,

0 otherwise.




It is easily checked that the following properties hold:

A ∪ B( )α = Aα ∪ Bα , A ∩ B( )α = Aα ∩ Bα .

However, A( )α
= A1−α( ) ≠ Aα( )  if α ≠ 1

2
(α ≠ 1). This result stems from the

fact that generally there are elements that belong neither to Aα nor to (A )α

(Aα < ( A )α ≠ X).
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Radecki (1977) has defined level fuzzy sets of a fuzzy set A as the fuzzy
sets ~Aα, α []0, 1[, such that

~Aα = x, µ A x( )



 , x ∈Aα








.

The rationale behind this definition is the fact that in practical applications
it is sufficient to consider fuzzy sets defined in only one part of their
support—the most significant part—in order to save computing time and
computer memory storage. Radecki has developed an algebra of level

fuzzy sets. However, (̃A )α, the approximation of A , cannot be obtained

from Ãα Ãα




 ≠ Ã



 α





 , which creates some difficulties.

N.B.:   In the literature, α-cuts are also called level sets.

D.   CARDINALITY OF A FUZZY SET

a.   Scalar Cardinality

When X is a finite set, the cardinality A  of a fuzzy set A on X is defined

as

A = µ A x( ).
x ∈X
∑

A  is sometimes called the power of A (see De Luca and Termini,

1972b). A = A X  is the relative cardinality. It can be interpreted as

the proportion of elements of X that are in A.

When X is not finite, A  does not always exist. However, if A has a

finite support, A = µ A x( )
x ∈supp A∑ . Otherwise, if X is a measurable set

and P is a measure on X dP x( ) = 1
x∫



 , A  can be the weighted sum

µ A x( )dP x( )
X∫ . The introduction of the weight function P looks like a

“fuzzification” of the universe X. This can be done more directly by
choosing a fuzzy set ~X on X as the most significant part of the universe. ~X
is assumed to have finite support or finite power. The relative cardinality

of A will then be A ∩ X̃ .

b.   Fuzzy Cardinality of a Fuzzy Set
Strictly speaking the cardinality of a fuzzy set should be a “fuzzy

number.” When A has finite support, its fuzzy cardinality is (Zadeh,
Reference from III.1, 1977a)

  
A

f
= α / Aα∑ = n, α( ), n ∈N{ and α = sup λ , Aλ = n{ }},

where Aα denotes the α-cuts of A.
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E.    INCLUSIONS AND EQUALITIES OF FUZZY SETS

a.   Inclusion In the Sense of Zadeh (1965)

A is said to be included in B(A # B) iff

;x [ X,   m
A
(x) < m

B
(x).  (17)

When the inequality is strict, the inclusion is said to be strict and is
denoted A , B. # and , are transitive. # is an order relation on ~3(X);
however, it is not a linear ordering. Obviously, A = B iff  A # B and
B # A.

b.   Examples.   Comparison of Operators

It is easy to check that

∀ A, B ∈ ~3(X),    
A ∩⋅ B ⊆ A ⋅ B ⊆ A ∩ B,

A ∪ B ⊆ A +̂ B ⊆ A ∪⋅ B.





See Fig. 2, where m
A
(x) = a, m

B
(x) = u.

It is patent from Fig. 2 that the probabilistic operators (+,• ) are a
median between (<, >) and (., ,). The respective algebraic structures
support this evidence. Moreover, the operator , is sensitive to only
significant overlapping of membership functions.

Convex combination of fuzzy sets (Zadeh, 1965): Let A, B, and L be
arbitrary fuzzy sets on X. The convex combination of A, B, and L is
denoted by (A, B; L). It is such that

  
∀ x ∈X, µ

A, B; L( ) x( ) = µL x( )µA x( ) + 1− µL x( )( )µB x( ).

A basic property of the convex combination is

  
∀L, A ∩ B ⊆ A, B; L( ) ⊆ A ∪ B.
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Conversely, ;C such that A > B # C # A < B, 'L [ ~3(X), C = (A, B;
L). The membership function of L is given by

  
µ L x( ) = µC x( ) − µ B x( )( ) / µ A x( ) − µ B x( )( ).

c.   Other Inclusions and Equalities

Zadeh’s definitions of inclusion and equality may appear very strict,
especially because precise membership values are by essence out of reach.

a.   Weak Inclusion and Equality

A first way to relax fuzzy-set inclusion is given by the definitions:
x a-belongs to A iff x [ A

a
;

A is weakly included in B, denoted A Bα B, as soon as all the elements of
X a-belong to A  or to B; mathematically,

A Bα B    iff     x [ ( A  < B)α ;x [ X, (18)

which is equivalent to

;x [ X,    max(1 – m
A
(x), m

B
(x)) > α.

Practically, A Bα B is not true as soon as

'x [ X,    m
A
(x) > 1 – α   and   m

B
(x) < α.

As such Bα is transitive only for α > 1
2
. Transitivity for α = 1

2
 can be

recovered by slightly modifying the above condition and stating

A Bα 
1
2
B   iff   ;x [ X,   m

A
(x) < 1

2
  or  m

B
(x) > 1

2
. (19)

We may want to impose the condition that Zadeh’s inclusion (#) be a
particular case of Bα , i.e.,

if A # B,   then A Bα B.

This holds only for α < 1
2
. Hence, the only transitive Bα consistent with #

is B 
1
2
 (abbreviated B), provided that we adopt the above slight modifica-

tion.†

N.B.:   If α > 1
2
, Zadeh’s inclusion does not imply Bα because the

elements x [ X such that 1 – α < m
A
(x) < m

B
(x) < α never belong to

( A  < B)α (see (18)).
The set equality F associated with B is defined as A F B iff A B B

and B B A, i.e.,
A F B  iff ;x [ X,

min[max(1 – m
A
(x), m

B
(x)), max(m

A
(x), 1 – m

B
(x))] > 1

2
.

†After modification, B 
1
2
 is still consistent with #.
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which is equivalent to

∀ x ∈X, max min µ A x( ), µB x( )( ), min 1− µ A x( ),1− µB x( )( )[ ] > 1
2
.

The weak equality A F B is thus interpreted as follows. Both membership
values m

A
(x) and m

B
(x) are either greater than or equal to 1

2
 or both

smaller than or equal to 1
2
. This weak equality is not transitive. Lack of

transitivity does not contradict our intuition concerning weak inclusion or
equality. However, to recover the transitivity of F, we could use (19) to
define equality.

Lastly, F is related to the symmetrical difference n through

A F B    iff    ;x [ X,    m
A n B

(x) < 1
2
.

Similarly, the other symmetrical difference , is related to Zadeh’s set
equality (=):

A = B    iff    A,B = Ø.

b.   e-Inclusions and e-Equalities

Another way of defining less strong equalities or inclusions is to use
some scalar measures S of similarity or “inclusion grades” I between two
fuzzy sets A and B. A threshold e is chosen such that

A ,
e
 B  iff  I(A, B) > e,     A =

 e
B  iff  S(A, B) > e.

,
e
 and = 

e
 denote respectively e-inclusion and e-equality. According to the

definitions of I  and S, ,
l
 and =

l
 may coincide with # and = ,

respectively. We must state at least the following conditions. If A # B,
then A ,

l
 B; if A = B, then A =

l
 B. Moreover, S must be symmetrical.

Inclusion grades and similarity measures are very numerous in the
literature. An informal presentation of such indices follows; X is supposed
finite.

Inclusion grades
Based on intersection and cardinality:

Il A, B( ) = A ∩ B A

(Sanchez, Reference from II.3, 1977c). When A # B, I
l
(A, B) = 1.

Based on inclusion and cardinality:

I2 A, B( ) = A − B( ) = A ∪⋅ B  (Zadeh’s inclusion);

(Goguen, Reference from III.1) when A # B, I
2
(A, B) = 1.

I3 A, B( ) = A ∪ B  (weak inclusion);

when A B B, I
3
(A, B) > 1

2
.
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Based on inclusion:

I4 A, B( ) =
x ∈X
inf µ

A − B
x( ) =

x ∈X
inf µ

A ∪⋅ B
x( );

when A # B, I
4
(A, B) = 1.

I5 A, B( ) =
x ∈X
inf µ

A ∪ B
x( );

when A B B, I
5
(A, B) > 1

2
.

Similarity measures
based on intersection, union and cardinality:

S1 A, B( ) = A ∩ B A ∪ B ;

when A = B, then S
1
(A, B) = 1.

based on equality and cardinality:

S2 A, B( ) = 1− A ∇ B = A ∇ B ;

A = B iff S
2
(A, B) = 1.

S3 A, B( ) = 1− A ∆ B = A ∆ B ;

if A F B, then S
3
(A, B) > 1 / 2.

N.B.:   1 – S
2
(A, B) is the relative Hamming distance between A and B

(Kaufmann, 1975). Kacprzyk (Reference from V) employed a slightly

different version of this distance, i.e., µ A x( ) − µB x( )
x ∈X∑ 2

.

Based on equality:

S4 A, B( ) = 1−
x ∈X
sup µA ∇ B x( ) =

x ∈X
inf µ

A ∇ B
x( ) ;

A = B iff S
4
(A, B) = 1.

S5 A, B( ) = 1−
x ∈X
sup µA ∆ B x( ) =

x ∈X
inf µ

A ∆ B
x( ) ;

A F B iff  S
5
(A, B) > 1 / 2.

N.B.:   1 – S
4
(A, B) is a distance between A and B which was used by

Nowakowska (Reference from IV.1) and Wenstøp (Reference from IV.2,
1976a).

It is interesting to notice that

S
i
(A, B) < min(I

i
(A, B), I

i
(B, A)) = S

i
′(A, B)    for i = 1, 2, 3;

S
i
(A, B) = min(I

i
(A, B), I

i
(B, A))    for i = 4, 5.

Consistency-like indices:
Consistency (Zadeh):

C A, B( ) =
x ∈X
sup µ A ∩ B x( )
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C(A, B) =  0 means that A and B are separated. Indeed, 1 – C(A, B) is
often used as a separation index between fuzzy sets. C(A, B) = 1 means
that it is possible to exhibit an element x [ X (finite) which totally belongs
to A and B.

Other indices:

Note that C(A, B) = 1 – I
5
(A, B ).

Similarly,

1− I4 A, B( ) =
x ∈X
sup µ A ∩⋅ B x( );

1− I2 A, B( ) = A ∩⋅ B ;

1− I3 A, B( ) = A ∩ B .

hgt(A , B) behaves as a consistency. When ||A > B || = 0, A and B are
separated; but if ||A > B || = 1, then A = B = X. The same holds for
||A , B ||.

g.   Remark: Representation of a Fuzzy Set Using a Universe of
Fuzzy Sets

Willaeys and Malvache (1976) employed consistency to describe a fuzzy
set A in terms of a given finite family R

1
, . . . , R

p
 of fuzzy sets. A is

characterized by hgt(A > R
i
), i = 1, p. They proved that the information

that was lost in the representation was the “least significant.” This repre-
sentation was adopted in order to save computer memory storage. To
achieve such a representation, it is clear that indices other than consistency
may be tried.

N.B.:   In this way any element x of X may be viewed as a fuzzy set ~x

on {R
i
, i = 1, p} : ~x = µRi

x( ) Rii=1

p∑ .

F.   CONVEX FUZZY SETS AND FUZZY STRUCTURED SETS

a.   Convex Fuzzy Sets

The notion of convexity can be generalized to fuzzy sets of a universe X,
which we shall assume to be a real Euclidean N-dimensional space (Zadeh,
1965).

A fuzzy set A is convex iff its α-cuts are convex. An equivalent definition
of convexity is: A is convex iff

∀ x1 ∈X, ∀ x2 ∈X, ∀λ ∈ 0,1[ ],
µ A λ x1+ 1− λ( ) x2( )    min µ A x1( ), µ A x2( )( ). (20)

Note that this definition does not imply that m
A
 is a convex function of x

>
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Figure 3 (a) Convex fuzzy set. (b) Nonconvex fuzzy set.

(see Fig. 3). If A and B are convex, so is A > B. An element x of X can
also be written (x1, x2, . . . , xN) since X has N dimensions. The projection
(shadow) of A (Zadeh, 1965) on the hyperplane H = {x, xi = 0} is defined
to be a fuzzy set P

H
(A) such that

µPH A( ) x1, . . . xi−1, xi+1, . . . , xN( ) =
xi

sup µ A x1, . . . , xN( ).

When A is a convex fuzzy set, so is P
H
(A). Moreover, if A and B are

convex and if ;H, P
H
(A) = P

H
(B), then A = B.

N.B.:   Definition:   A fuzzy number is a convex normalized fuzzy set A
of the real line R such that

(a)  '!x
0
 [ R, m

A
(x

0
) = 1 (x

0
 is called the mean value of A);

(b)  m
A
 is piecewise continuous.

N.B.:   Gitman and Levine (Reference from IV.6) defined symmetric
and unimodal fuzzy sets as follows: Let X be equipped with a metric d, and

let Γ xi
 be the m

A
(x

i
)-cut of a fuzzy set A. A is said to be unimodal iff Γ xi

 is
connected ;x

i
. If A is convex, A is unimodal. Let x

0
 be the unique element

of X such that m
A
(x

0
) = sup

x
 m

A
(x), and Γ xid { x, d(x

0
, x) < d(x

0
, x

i
)}. A

is symmetric iff Γ xi
= Γ xid

, ∀ xi ∈X .



Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

II.1.  Fuzzy Sets 27

b.   Fuzzy Structured Sets

Fuzzy sets can be equipped with algebraic structures. Let p be a
composition law on X. A fuzzy set A is closed under p iff (Rosenfeld,
1971)

∀ x1 ∈X, ∀ x2 ∈X1 µ A x1 ∗ x2( )  > min µ A x1( ), µ A x2( )( ) (21)

If (X, p ) is a group, a fuzzy subgroup A of X satisfies the above
inequality and the equality m

A
(x–1) = m

A
(x), where x–1x = e and e is the

identity.
If X is a real Euclidean space and x

1
 p x

2
 = λx

1
 + (1 – λ)x

2
, λ [ [0, 1],

we see that a convex fuzzy set is a particular case of a fuzzy structured set.
Other fuzzy structured sets, such as fuzzy ideals (Rosenfeld, 1971) or

fuzzy modules (Negoita and Ralescu, 1975b), have already been defined.

G.   L-FUZZY SETS

a.   Definitions

Let L be a set. An L-fuzzy set A is associated with a function m
A
 from

the universe X to L (Goguen, 1967). If L has a given structure, such as
lattice or group structure, 3

L
(X), the set of L-fuzzy sets on X, will have

this structure too. Several structures are worth considering.
First, let L be a lattice. The intersection and the union of L-fuzzy sets

can be induced in the following way:

∀ x ∈X, µ A ∩ B x( ) = inf µ A x( ), µB x( )( ), (22)

∀ x ∈X, µ A ∪ B x( ) = sup µ A x( ), µB x( )( ), (23)

where inf and sup denote respectively the greatest lower bound and the
least upper bound. Note that membership values of L-fuzzy sets cannot
always be compared unless L is linearly ordered. Moreover, distributivity
and complementation require a richer structure to be defined.

A Brouwerian lattice is a lattice L such that ∀ a ∈L, ∀b ∈L, {x [ L,
inf(a, x) < b} has a least upper bound, denoted a α b. a α b is a relative
pseudocomplement of a with respect to b. For example, a linearly ordered
set having a greatest element 1 is a Brouwerian lattice.

A dual Brouwerian lattice is a lattice L such that ∀ a ∈L, ∀b ∈L,
{ x [ L, sup(a, x) > b} has a greatest lower bound, denoted a e b. For
instance, [0, 1] is a complete Brouwerian and dual Brouwerian lattice:

  
a α b =

1 if a b

b  if b < a




;      a e b =
b if a < b

0  if b a.




<

<
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The following theorem relates distributivity and Brouwerian lattices
(Birkhoff, NF 1948):

A complete lattice is Brouwerian iff inf is totally distributive over sup,
i.e.,

∀ I ⊆ L, ∀ a ∈L, inf a,
b ∈I
sup b







=
b ∈ I
sup inf a, b( ).

A complete lattice is dual Brouwerian iff sup is totally distributive over
inf. Thus, if L has such properties, > and < are mutually distributive (De
Luca and Termini, 1972a). Moreover, a complete lattice L that is both
Brouwerian and dual Brouwerian is Boolean iff ;a [ L, a α 0 = a e 1.
This property does not hold in L = [0, 1].

In a Boolean lattice, a α b = sup(a , b), where a  is the complement of a.
Brown (1971) studied L-fuzzy sets when L is a Boolean lattice. The

complement of an L-fuzzy set A is then the A  such that µ A (x) is the
complement of m

A
(x);x. Brown also gives some results about the convex-

ity and the connectivity of L-fuzzy sets.
Negoita and Ralescu (1975b) considered other kinds of structure for L,

for instance, semigroup and semiring structures.

b.   Interpretation

There may occur some situations for which valuation sets different from
[0, 1] are worth considering (De Luca and Termini, 1974).

For instance, if m ordinary fuzzy sets A
i
(i = 1,m) in X correspond to m

properties, it is possible to associate with each x [ X the vector of
membership values µ Ai

x( )[ ] that represent the degree with which x satisfies
the properties. A function from X to the set L = [0, 1]m has been built. L is
a complete lattice that is not a linear ordering.

Now assume that each element x of X is described by means of only one
property among A

1
, . . . , A

m
, supposedly the most significant one for x.

The property that best describes an element x′ ≠ x may be different from
that which describes x. We obtain in this way a partition of X into m
classes. Obviously, it is meaningless to compare membership values of
elements in different classes. Thus, the valuation set is here a collection of
m disjoint linear orderings.

c.   Flou Sets

An m-flou set is an m-tuple A = (E
1
, . . . , E

m
) of ordinary subsets of X

such that

  E1 ⊆L⊆ Em. (24)
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Operators on flou sets are defined, with A = (E
1
, . . . , E

m
), B =

(F
1
, . . . , F

m
), as follows:

union:

A < B = (E
1
 < F

1
, . . . , E

m
 < F

m
);

intersection:

A > B = (E
1
 > F

1
, . . . , E

m
 > F

m
);

complementation:

A  = (E
m
, . . . , E

1);

inclusion:

A # B   iff   E
i
 # F

i
,    i = l, m.

It is easy to check that the set F
m
(X) of m-flou sets is a pseudocomple-

mented distributive lattice. F
m
(X) has the same structural properties as

~3(X) (see B.d). Generally, A < A  ≠ (X, . . . , X) and A > A  ≠ (Ø, . . . , Ø).
The concept of flou set was introduced by Gentilhomme (1968). For

m = 2, an m-flou set may be interpreted as follows: E
1
 is the set of the

“central” elements in A, and E
2
 – E

1
, the set of “peripheral” ones. The

elements of E
1
 are considered to belong more to A than the elements of

E
2
 – E

1
 • m-flou sets are particular cases of L-fuzzy sets where L is the

finite linearly ordered set of m + 1 elements (α
0
, α

1
, . . . , α

m
) with α

i

= i / m; there is a structural isomorphism f between the set 3
Lm

(X) of
these L-fuzzy sets and F

m
(X),

3
Lm

(X) →  F
m
(X)  Ã a f Ã( ) = Aαm

, . . . , Aα1( ) = A

where Aαi
 is the α

i
-cut of ~A. For instance,

f Ã



 = A( )αm

, . . . , A( )α1





 = Aα1( ) , . . . , Aαm( )



 = A,

since A( )αi
= A( )αi−1

= A1−αi−1( )  and  1− α i = αm−i .

N.B.:   Aαi
 denotes the strong α

i
-cut of A.   Q.E.D.

We also have f (~A > ~B) = f (~A) > f (~B); f(~A < ~B) = f (~A) < f (~B).
More general kinds of flou sets are studied by Negoita and Ralescu

(1975b).
Since there is in fact no sharp boundary between the sets of central and

peripheral elements, we may define more general flou sets as m-tuples of
ordinary fuzzy sets that satisfy (24), i.e., as fuzzy m-flou sets.
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d.   Type m Fuzzy Sets

Type m fuzzy sets are defined recursively as follows:

a type 1 fuzzy set is an ordinary fuzzy set in X;
a type m fuzzy set (m > 1) in X is an L-fuzzy set whose membership

values are type m – 1 fuzzy sets on [0, 1].

Let ~3
m
(X) be the set of type m fuzzy sets in X. ~3

1
(X) = ~3(X). This notion

was introduced by Zadeh (Reference from IV.2, 1971).
Union, intersection, and complementation of type m fuzzy sets can also

be recursively defined by induction from the structure of the valuation set.
Let us denote these operators by <

m
, >

m
, –m, for instance,

∪1 = ∪;     µ A∪m B x( ) = µ A x( ) ∪m−1 µB x( ),     m > 1.

Type 2 fuzzy sets are the most easily interpreted and thus seem to be the
most useful. Mizumoto and Tanaka (1976) were the first to study them.
Type 2 fuzzy sets are fuzzy sets whose grades of membership are them-
selves fuzzy. They are intuitively appealing because grades of membership
can never be obtained precisely in practical situations.

Figure 4
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In Fig. 4 a representation of two fuzzy sets of type 2 is given, where
µ

A
(x) is assumed to be a fuzzy number; ;x, l

A
 is the set of the maxima of

µ
A
(x) when x ranges over X.
Although <

2
, >

2
, –2 are canonical operators, it can easily be shown

that they are inconsistent with our intuitions concerning union, intersec-
tion, and complementation of type 2 fuzzy sets, and even with the corre-
sponding operators in the original fuzzy set theory itself. To prove this, let
µ

A
(x) and µ

B
(x) be fuzzy numbers whose mean values are respectively

l
A
(x) and l

B
(x). Then µ

A
(x) and µ

B
(x) intuitively mean “approximately

l
A
(x)” and “approximately l

B
(x).” We wish the membership value of x in

A <
2
B to be “approximately max(l

A
(x), l

B
(x)),” i.e., a fuzzy number

whose mean value is max(l
A
(x), l

B
(x)). However, using the above canoni-

cal definition of <
2
, we get µ

A
(x) < µ

B
(x), which is generally nonconvex

and hence not a fuzzy number (see Fig. 4). As a matter of fact, we obtain a
set of two elements that are approximately l

A
(x), and l

B
(x). Other set-

theoretic operators are thus needed for type 2 fuzzy sets. These operators
will be provided in the next chapter thanks to an “extension principle.”

Special kinds of type 2 fuzzy sets that can be found in the literature
include:

Classical sets of type 2 (Zadeh, 1975): The membership function of a
classical set of type 2 is a mapping from X to the set 3({0, 1}) of classical
subsets of {0, 1}, 3({0, 1}) = {Ø, {0}, {1}, {0, 1}} . A possible interpretation
of the four membership values is:

µ A x( ) = Ø:    x ∈A as x ∉A( ) is undefined or absurd;

µ A x( ) = 0{ }:      x ∉A

µ A x( ) = 1{ }:       x ∈A





    “∈”has its ordinary meaning here.

µ A x( ) = 0,1{ }:      We do not know if x ∈ A  or if x ∉ A.

F-fuzzy sets (Sambuc, 1975): F-fuzzy sets are mappings from X to the
set of the closed intervals in [0, 1], i.e., interval-valued fuzzy sets. (See also
Grattan-Guiness, 1975; Jahn, 1975.)

Many-valued quantities (Grattan-Guiness, 1975): These are mappings
from X = R to 3([0, 1]).

e.   Probabilistic Sets (Hirota, 1977)

A probalilistic set A is defined by a randomized membership function µ
A

from X × Ω to [0, 1], where µ
A
(x, •) is measurable on the σ-algebra Ω.

The membership value µ
A
(x, ω) of x in A is a random variable built from

the distribution p of ω, assumed independent of A. Fig. 5 depicts the
“noised” fuzzy set A. p models the subjective imprecision of µ

A
. Since p
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does not depend on A, the set-theoretic operators <, >, # can be easily
extended. Probabilistic sets in X form a pseudocomplemented distributive
lattice. Probabilistic fuzzy sets, which are not L-fuzzy sets, are related to
the result suggested by MacVicar-Whelan’s experiment (Reference from
IV.1, 1977), when asking several people to locate the boundary between
membership and nonmembership, answers are randomly distributed in a
given interval.

Figure 5

H.   MEASURES OF FUZZINESS

Various authors have proposed scalar indices to measure the degree of
fuzziness of a fuzzy set. The degree of fuzziness is assumed to express on a
global level the difficulty of deciding which elements belong and which do
not belong to a given fuzzy set.

Mathematically, a measure of fuzziness is a mapping d from ~3(X) to
[0, + `) satisfying the conditions (De Luca and Termini, 1972b):

(1) d(A) = 0 iff A is an ordinary subset of X;
(2) d(A) is maximum iff m

A
(x) = 1

2
 ;x [ X;

(3) d(A*) < d(A), where A* is any sharpened version of A, that is,
m

A*
(x) <m

A
(x) if m

A
(x) < 1

2
 and m

A*
(x) > m

A
(x) if m

A
(x) > 1

2
;

(4) d(A) = d( A ) ( A  is as fuzzy as A).

When X is finite, Loo (1977) has proposed a general mathematical form
for d:

d A( ) = F ci f i µ A xi( )( )
i=1

X

∑












,

where c
i
 [ R+, ;i ; f

i
; is a real-valued function such that f

i
(0) = f

i
(1) = 0;

f
i
(u) = f

i
(1 – u) ;u [ [0, 1]; and f

i
 is strictly increasing on [0, 1

2
]. F is a
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positive increasing function. d satisfies (1)–(4), but is not a priori the most
general form. When F is linear, the following property holds:

d(A) + d(B) = d(A < B) + d(A > B).

Particular forms of d are:

Index of fuzziness (Kaufmann, 1975): F is the identity, ;i, c
i
 = 1, ;i,

f
i
(u) = u when u [ [0, 1

2
]. d(A) is the distance between A and the closest

ordinary subset of X to A using a Hamming distance, i.e.,

d A( ) = µ A xi( ) − µ1/2 xi( )
i = 1

M

∑ ,

where A
1 / 2

 is the 1
2
-cut of A.

Entropy (De Luca and Termini, 1972b):   F(u) = ku, k > 0; ;i, c
i
 = 1;

;i,   f
i
(u) = – u ln(u) – (1 – u)ln(1 – u)

(Shannon function).

Note that measures of fuzziness evaluate A and A  at the same time.
They can be extended to evaluate a whole fuzzy partition in order to give a
rating of the total amount of ambiguity that arises when deciding to which

of A
1
, . . . , A

m
 an element x belongs. We have µ Aii=1

m∑ x( ) = 1. For such a
fuzzy partition, the measure of fuzziness is (Capocelli and De Luca, 1973)

d(A
1
, . . . , A

m
) = υ µ Aj

xi( )( )
j=1

m

∑
i=1

X

∑ ,

where y is any continuous and strictly concave function in [0, 1]. When
(A

1
, . . . , A

m
) is an ordinary partition of X, d(A

1
, . . . , A

m
) = 0.

d(A
1
, . . . , A

m
) is maximum iff ;i, ;j, µ Aj

(x
i
) = 1 /m (maximum ambigu-

ity).
Capocelli and De Luca (1973) have constructed a thermodynamics of

fuzzy sets, introducing such concepts as absolute temperature, en-
ergy, . . . , even recovering Bose–Einstein and Fermi–Dirac distributions.

Entropy measures of a fuzzy set defined on a denumerable support are
studied by De Luca and Termini (1977). The same authors extended this
notion to L-fuzzy sets in a finite universe (De Luca and Termini, 1974).

Lastly, Knopfmacher (1975) gave a formulation of a measure of fuzzi-
ness, for fuzzy sets in a measurable universe, that satisfies (1)–(4):

d A( ) = 1
P X( )

F µ A x( )( )dP x( ),
x∫

where F(u) = F(1 – u), u [ [0, 1]; F(0) = F(1) = 0; F is strictly increasing
in [0, 1

2
].
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Remark   Instead of using a quantitative measure of fuzziness, we may
simply employ a qualitative typology, as suggested by Kaufmann (1975,
Vol. 3, p. 287 et seq.), in order to classify fuzzy sets in rough categories
such as “slightly fuzzy,” “almost precise,” “very fuzzy.”
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Chapter 2
EXTENSION PRINCIPLE,
EXTENDED OPERATIONS,
AND EXTENDED FUZZY SETS

The extension principle introduced by Zadeh is one of the most basic
ideas of fuzzy set theory. It provides a general method for extending
nonfuzzy mathematical concepts in order to deal with fuzzy quantities.
Some illustrations are given including the notion of fuzzy distance between
fuzzy sets. The extension principle is then systematically applied to real
algebra: operations on fuzzy numbers are extensively developed. These
operations generalize interval analysis and are computationally attractive.
Although the set of real fuzzy numbers equipped with an extended addi-
tion or multiplication is no longer a group, many structural properties are
preserved. Lastly, the extension principle is shown to be very useful for
defining set-theoretic operations for higher order fuzzy sets.

A.   EXTENSION PRINCIPLE

a.   Definition

Let X be a Cartesian product of universes, X = X
1
 × ⋅ ⋅ ⋅ × X

r
, and

A
1
, . . . , A

r
 be r fuzzy sets in X

1
, . . . , X

r
, respectively. The Cartesian

product of A
1
, . . . , A

r
 is defined as

A 1×  ⋅  ⋅  ⋅  × Ar = X1× ⋅ ⋅ ⋅ ×Xr∫ min µ A1
x1( ), ...,µ Ar

xr( )( ) / x1, ..., xr( ).

Let f be a mapping from X
1
 × ⋅ ⋅ ⋅ × X

r
 to a universe Y such that

36



37
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II.2. Extension Principle

y = f(x
1
, . . . , x

r
). The extension principle (Zadeh, 1975) allows us to

induce from r fuzzy sets A
i
 a fuzzy set B on Y through f such that

µB y( ) =      sup    min µ A1
x1( ),  .  .  .  ,µ A r

xr( )( ). (1)
x1, . . . , xr

y = f(x1, . . . , xr)

µΒ(y) = 0    if    f –1(y) =  Ø,

where f –1(y) is the inverse image of y. µΒ(y) is the greatest among the
membership values µ A1× ⋅ ⋅ ⋅ ×Ar

 (x
1
, . . . , x

r
) of the realizations of y using

r-tuples (x
1
 , . . . , x

r
).

The special case when r = 1 was already solved by Zadeh (Reference
from II.1, 1965). When f is one to one, (1) becomes µΒ(y) = µ

A
(f –1(y))

when f –1(y) ≠ Ø.
Zadeh usually writes (1) as

B = f A1, . . . , A r( ) = X1× . . .× Xr∫ min µ A 1
x 1( ), . . . ,µ A r

x r( )( ) / f x 1, . . . , x r( ),
where the sup operation is implicit.

b.   Compatibility of the Extension Principle with α-Cuts

Denoting the image of A
1
, . . . , A

r
, by B = f(A

1
, . . . , A

r
) the following

proposition holds (Nguyen, 1976):

[f(A
1
, . . . , A

r
)]α = f(A

1α, . . . , A
rα)

iff  ∀y [ Y, ∃x*
1
, . . . , x*

r
, µ

B
(y) = µ

A 1× . . . × A r
(x*

1
, . . . ,x*

r
) (2)

(the upper bound in (1) is attained).

Remark   While a discretization of the valuation set generally commutes
with the extension of function f, this is not true for the discretization of the
universe (X

i
 = R) as will be seen later (see Section B).

c.   Other Extension Principles

Other extension principles can be considered.
Jain (1976) proposed replacing sup in (1) by the probabilistic sum +

(u + v = u + v – uv). The rationale behind this operator is that the mem-
bership of y in f (A

1
, . . . , A

r
) should depend on the number of r-tuples

(x
1
, . . . , x

r
) such that y = f (x

1
, . . . , x

r
). This extension principle sounds

more probabilistic than fuzzy, particularly if we also replace min by
product. It has been pointed out by Dubois and Prade (1978a) that, in



38

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

II.2. Extension Principle

general f (A
1
, . . . , A

r
) is a classical subset of y when X = R (with min or

product) and continuous membership functions are considered. So the
result depends only on the supports of the A

i
, which invalidates this

principle as one of fuzzy extension.
Another extension principle can be obtained by just replacing min by

product in (1). This principle implicitly assumes some “interactivity” or
possible “compensation” between the A

i
. The problem of interactivity will

be considered later (see chapter 3). It does not seem that this latter
principle has the same drawbacks as does that of Jain.

Note that f
2
(A

1
, . . . , A

r
) # f

1
(A

r
, . . . , A

r
) where f

1
 is the sup-min ex-

tended f and f
2
 is the sup– ⋅ extended f.

d.   Generality of the Extension Principle

Given this principle, it is possible to fuzzify any domain of mathematical
reasoning based on set theory. As in Gaines (Reference from III.1, 1976b),
“the fundamental change is to replace the precise concept that a variable
has a value with the fuzzy concept that a variable has a degree of
membership to each possible value.”

However, using the extension principle is not the only way of fuzzifying
mathematical structures. Another way is just to replace ordinary sets by
fuzzy sets (or the family of their α-cuts) in the framework of a given
theory. For instance, fuzzy groups were defined in the previous chapter;
their setting did not require an extension principle: a fuzzy group is
nothing but a subgroup without sharp boundary. The group operation is
still performed on the elements of the universe. Using the extension
principle, however, we can extend the group operation to have it acting on
fuzzy sets of the universe. The extended operation is not necessarily a
group operation. This latter way of “fuzzifying a group” is radically
different from Rosenfeld’s (Reference from II.1) and will be investigated in
Section B of this chapter.

e.   Three Examples of Application of the Extension Principle

α.  Fuzzy Distance between Fuzzy Sets

Let X be a metric space equipped with the pseudometric d, i.e.,

(1)d is a mapping from X2 to R+;
(2)d(x, x) = 0 ∀x;
(3)d(x

1
,x

2
) = d(x

2
, x

l
) ∀x

1
, ∀x

2
;

(4)d(x
1
, x

3
) < d(x

1
, x

2
) + d(x

2
, x

3
)∀x

1
,  ∀x

2
, ∀x

3
.

A fuzzy distance ̃d between fuzzy sets A and B on X is defined using (1)
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as

∀δ ∈R+,   µ
d̃ A, B( ) δ( ) =    

δ =d u, v( )
sup     min µ A u( ),µ B v( )( ).

d̃ (A, B) models a distance between fuzzy “spots.” When A and B are
connected subsets of X, d̃ (A, B) is an ordinary interval whose extremities
are respectively the shortest and greatest distance between a point of A
and a point of B. d̃ is a mapping from [  ̃3(X)]2 to the set of fuzzy sets on
R+ (i.e., positive real fuzzy sets). d̃ (A, A) can be interpreted as the fuzzy
diameter of A and µ

d̃ A, A( ) (0) = hgt(A). It is clear that we have ̃d (A, B)
= d̃ (B, A).

The question of knowing whether some triangular inequality like (4) still
holds for d̃  is less straightforward. Let Aα, Bα, Cα be the α-cuts of three
fuzzy sets on X. Let us respectively denote by u, v, w any element of
Aα, Bα, Cα. The following inequalities hold:

supd(u, w) = d(u*, w*) < d (u*, v) + d(v, w*) < sup (d(u*, v) + d(v, w*));
u, w v

sup (d(u*, v) + d(v, w*)) < sup (d(u, v) + d(v, w));
v u, v, w

sup (d(u, v) + d(v, w)) < supd(u, v) + sup d(v, w),
u, v, w  u, v v, w

inf d(u, v) + inf d(v, w)< inf (d(u, v) + d(v, w)).
u, v v, w u, v, w

The sides of the two last inequalities correspond to two different fuzzifica-
tions:

µ
d̃ A, B, C( ) δ( ) =     

δ = d u, v( ) + d v, w( )
u,v,w

sup  min µ A u( ),µ B v( ),µC w( )( ),

µ
∆̃ A, B, C( )

∆( ) =     

∆ = δ + ′δ
δ , ′δ
sup     min

δ = d u, v( )
u,v

sup  min µ A u( ),µB v( )( ),








′δ = d v, w( )
v, w
sup  min µ B v( ),µC w( )( )








.

In µ
d̃ A, B, C( )

we consider all the paths between A and C with a detour in
B, while in µ

∆̃ A, B, C( )
 the arrival point in B is no longer constrained to be

the departure point. Hence, we have, if Aα, Bα, Cα are connected and
without holes, ∀α, d̃ (A, B, C) # ∆̃ (A, B, C).

Let us denote by ̃d (A, B, C)α and ∆̃ (A, B, C)α the α-cuts of d̃ (A, B, C)
and ∆̃ (A, B, C) respectively. It is easy to show that ∀α ∈ ]0, 1],

inf( d̃ (A, C)α) < inf( d̃ (A, B, C)α),

sup(d̃ (A, C)α) < sup(d̃ (A, B, C)α),

sup(d̃ (A, C)α) < sup(∆̃ (A, B, C)α),



40

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

II.2. Extension Principle

and provided that these bounds are attained for some elements of X.
Nothing can be said when comparing inf(d̃ (A, C)α) and inf(∆̃ (A, B, C)α).
The deep reason is that when A, B, C are ordinary sets, the triangular
inequality does not hold for the minimal distances between the subsets.
The two first inequalities can be interpreted as a triangular inequality for
fuzzy distances (see also B.d.e). d̃  may also be viewed as a fuzzy measure
of dissimilarity between fuzzy sets.

ß. Compatibility of Two Fuzzy Sets (Zadeh, Reference from III.1,
1977a)

Given a fuzzy set A on X, µ
A
(x) is the grade of membership of x in A.

We may also call it the degree of compatibility of the fuzzy value A with
the nonfuzzy value x. The extension principle allows us to evaluate the
compatibility of the fuzzy value A with another fuzzy value B, taken as a
reference.

Let t be this compatibility. t is a fuzzy set on [0, 1] since it is µ
A
(B).

Using (1),

µτ(u) =     sup     µ
B
(x)    ∀u∈[0, 1], (3)

x : u = µA(x)

or, using Zadeh’s notation,

t = µ
A
(B) = e

X  
 µ

B
(x)/µ

A
(x).

An example of computation of µτ(u) is pictured in Fig. 1. When µ
A
 is

one to one, µτ = µ
B
 ° µ

A
–1, where ° is the composition of functions. When

A = B, µτ is the identity function, µτ(u) = u. Remember that the converse
proposition does not hold: A and B can be very different while µτ(u) = u.

Figure 1

t is a normalized fuzzy set if B is. To prove this, observe that if b is such
that µ

B
(b) = 1, µτ(µA

(b)) = 1 also. The converse proposition is obvious
provided that the sup is reached in (3).   Q.E.D.

If  µ
B
 has only one relative maximum b, µ

B
(b) = hgt(B), then µτ has only

one relative maximum.

This is obvious from Zadeh’s form of the extension principle.
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From now on B is assumed to have only one global maximum b. µ
A
(b) is

the mean value of t, i.e., the compatibility degree of A with respect to B is
“approximately µ

A
(b)”  µ

A
(b) can be considered as a scalar inclusion index

somewhat like consistency (cf. I.E.c.ß); instead of choosing hgt(A > B),
we prefer here the membership value in A of the element that mostly
belongs to B. Note that the mean value of t is always less than hgt(A).

More generally, the compatibility of A with respect to B is a fuzzy
inclusion index.

γ.   Fuzzy α-Cuts   (Zadeh, Reference from IV.6)

Let A be a fuzzy set on X and Aα its α-cut. Aα can be written µ
A
–1([α, 1]),

i.e., the inverse image of the interval [α, 1]. Let µ
[α, 1]

 be the characteristic
function of the interval [a, 1] in the universe [0, 1]. We get

µ Aα x( ) = µ α , 1[ ] µ A x( )( )        ∀ x ∈ X. (4)

A fuzzy α-cut can be understood as the set of elements whose member-
ship values are greater than “approximately α,” i.e., belong to a fuzzy
interval (α̃ , 1], where µ α̃ , 1( ]  is a continuous nondecreasing function from
[0, 1] to [0, 1] and µ α̃ , 1( ] (1) = 1 Semantically, the fuzzy interval means
something like “high.” So it is natural to extend (4) into

µ Aα̃
x( ) = µ α̃ , 1( ] µ A x( )( )       ∀ x ∈ X (5)

where Aα̃  is the fuzzy α-cut of A.
Let us prove that (5) can be derived from the extension principle. Since

Aα = µ
A
–1([α, 1]), symbolically we also have Aα̃  = µ

A
–1([ α̃, 1]); hence, we

must extend µ
A
–1 viewed as a multivalued function from 3([0, 1]) in X.

Nevertheless, the extension principle can be generalized to deal with
multivalued functions. In our example,

µ Aα̃
x( ) =     

x∈µ A
−1 α ,1[ ]( )

α
sup µ

α̃ ,1( ]
∗

α ,1[ ]( ) (6)

where µ
α̃ ,1( ]

∗ α ,1[ ]



 = µ

α̃ ,1( ] α( ) . Note that {a, x [ µ
A
–1((a, 1])} = ]0, µ

A
(x)];

and since µ
α̃ ,1( ]

∗  is nondecreasing and continuous, µ Aα̃
x( ) = µ α̃ ,1( ]

∗ µ A x( )[( ,

1]), which is the same as (5). In (6) µ Aα̃
x( ) is the greatest among the

membership values of the sets [a, 1] whose images under µ
A
–1 contain x;

this contrasts with (1), where = replaces [.

B.   EXTENDED REAL OPERATIONS

An important field of applications for the extension principle is given by
algebraic operations such as addition and multiplication. More generally,
given an n-ary composition law from Xn to X, it is possible to induce an
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n-ary composition law in   ̃3(X). In this section we restrict ourselves to
X = R, the real line; so here we extend real algebra.

a.   Operations on Fuzzy Numbers  (Dubois and Prade, 1978c)

Some previous works related to operations on fuzzy numbers are those
of Jain (1976), Nahmias (1978), Mizumoto and Tanaka (1976b, c), Baas
and Kwakernaak (1977).

For simplicity, theorems and proofs will be stated for binary operations.
However, they remain valid for n-ary operations (see Dubois and Prade,
1978c).

Definition  A binary operation ∗ in R is said to be increasing iff:

if x
1
 > y

1
 and x

2
 > y

2
, then x

1
 ∗ x

2
 > y

1
 ∗ y

2
.

In the same way, ∗ is said to be decreasing iff x
1
 > y

1
 and x

2
 > y

2
 imply

x
1
 ∗ x

2
 < y

1
 ∗ y

2
.

Using the extension principle, ∗ can be extended into ∗ to combine
two fuzzy numbers (i.e., convex and normalized fuzzy sets in R) M and N.
Moreover, µ

M
 and µ

N
 are assumed to be continuous functions on R;

µ
M ∗ N

(z) =   sup   min(µ
M
(x), µ

N
(y)). (7)

z= x ∗ y

N.B.: Kaufmann (Reference from I, 1975c, pp. 290–295) considered a
probabilistic method for extending addition to fuzzy numbers, by means of
an ordinary convolution, µ

M + N
(z) = ∫ 0

z µ
M

(x)µ
N

(z – x)dx, for some par-
ticular kinds of µ

M
 and µ

N
. See also Mar˘es (1977a, b).

From now on, n(R) notes the set of real fuzzy numbers.

Lemma 1 Let M and N be two continuous fuzzy numbers, and ∗ a
continuous increasing binary operation. Let [λ

M
, ρ

M
]  and [λ

N
, ρ

N
]  be two

intervals on nondecreasing parts of µ
M
 and µ

N
, respectively (possibly

λ
M
 = ρ

M
 or λ

N
 = ρ

N
) such that

∀ x [ [λ
M
, ρ

M
],  ∀ y [ [λ

N
, ρ

N
], µ

M
(x) = µ

N
(y) = ω.

Then
∀ t [ [λ

M
∗ λ

N
, ρ

M
∗ ρ

N
], µ

M ∗ N
(t) = ω.

Proof: Let x
M
 be an element of [λ

M
, ρ

M
] and y

N
 an element of [λ

N
, ρ

N
].

We have min(µ
M
(x

M
), µ

N
(y

N
) = ω.
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Let (x, y) [ R2 be such that x ∗ y = x
M
 ∗ y

N
. If x < x

M
, then min(µ

M
(x),

µ
N
(y)) < ω because µ

M
 is nondecreasing on (–∞, x

M
], at least. If x > x

M
,

then y < y
N
 because ∗ is increasing, and min(µ

M
(x), µ

N
(y)) < ω since µ

N

is nondecreasing on (–∞, y
N

], at least. Hence µ
M ∗ N

(x
M
 ∗ y

N
) = ω. When

x
M
 and y

N
 range over [λ

M
, ρ

M
] and [λ

N
, ρ

N
], respectively, x

M
 ∗ y

N
 ranges

over [λ
M

∗ λ
N
, ρ

M
∗ ρ

N
] since ∗ is increasing and continuous.   Q.E.D.

A similar lemma holds when we consider the nonincreasing parts of µ
M

and µ
N
.

Lemma 2  Let M and N be two continuous fuzzy numbers such that µ
M

is nondecreasing on (–∞, m] and nonincreasing on [m,+ ∞) and µ
N
 is

nondecreasing on (–∞, n] and nonincreasing on [n, + ∞). Let ∗ be a
continuous increasing binary operation. Assume µ

M
(R′) = µ

N
(R′) = [0, 1]

where R′ = R < {–∞, + ∞}.
Then ∀ t []inf

x, y
x ∗ y,sup

x, y
x ∗ y[, ∃(x

M
, y

N
) such that:

Either x
M
 < m and y

N
 < n, or x

M
 > m and y

M
 > n;

µ
M ∗ N

(x
M
 ∗ y

N
) = µ

M
 (x

M
) = µ

N
 (x

N
) = µ

M ∗ N
(t).

Proof:  Note that since µ
M
 and µ

N
 are continuous and nondecreasing,

they are locally either constant or strictly increasing on (–∞, m] and
(–∞, n], respectively.

Let µ M+
–1  be a function from [0, 1] to the set of subintervals of (–∞, m],

ω ∞  [λ
M

(ω), ρ
M

(ω)] = µ M+
–1 (ω), such that x [[λ

M
(ω), ρ

M
(ω)] iff µ M+

(x)
= µ

M
(x) = ω ( µ M+ is the nondecreasing part of µ

M
).

Similarly, µ M+
–1 : ω ∞ [λ

N
(ω), ρ

N
(ω)] = µ N+

−1 (ω).
Let g  and g  be functions from [0, 1] to [–∞, m∗ n] defined as

g (ω) ρ
M

(ω) * ρ
N
 (ω),  g (ω) = λ

M
(ω) ∗ λ

N
(ω).

Since ∗ is increasing, g (ω) > g (ω) and g , g  are nondecreasing. g (1) =
m ∗ n, g (0) = inf

x, y
(x ∗ y). Hence, ∀ t [ ( g (0), m∗ n] , ∃ ω̂  such that t [

[ g( ω̂ ), g ( ω̂ )]. On the intervals [λ
M

( ω̂ ), ρ
M

( ω̂ )], [λ
N
( ω̂ ), ρ

N
 ( ω̂ )], µ M+

and µN+

are constant, and their values are ω̂ .
Hence, due to the continuity of ∗,

∃( x̂ , ŷ ) [ [λ
M

( ω̂ ), ρ
M

( ω̂ )] × [λ
N
( ω̂ ), ρ

N
 ( ω̂ )]

such that t = x̂ ∗ ŷ  and, by Lemma 1, µ
M ∗ N

(t) = ω̂ . When t > m ∗ n, a
similar proof holds.   Q.E.D.

When µ
M

 and µ
N
 are strictly increasing respectively on (–∞, m] and on
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(–∞, n], g (ω) = g (ω) = g(ω). g is bijective from [0, 1] to (g(0),m ∗ n] and

µ M ∗ N =

µ M+
–1 ∗ µ N+

–1( )–1
  on   g 0( ), m ∗ n[ ],

µ M−
–1 ∗ µ N−

–1( )–1
  on m ∗ n,

x, y
sup  x ∗ y






,

0
                       

otherwise














(µ
M–

and µ
N–

 denote the nonincreasing parts of µ
M
 and µ

N
.)

We can now conclude:

Theorem 1   If M and N are continuous fuzzy numbers whose member-
ship functions are onto and ∗ is a continuous increasing binary operation,
then the extension M * XN is a continuous fuzzy number whose member-
ship function is onto. The effective construction of M * N can be per-
formed separately on increasing and decreasing parts of µ

M
 and µ

N
 using

the procedure given in Lemma 1.
When ∗ is a decreasing continuous binary operation, the same results

hold; but we must use the decreasing parts of µ
M
 and µ

N
 to build the

increasing part of µ
M ∗ N

 and vice versa.
Suppose the operation ∗ is for instance such that on R

If x
1
 > y

1
 and x

2
 < y

2
,   then x

1
 ∗ x

2
 > y

1
 ∗ y

2
.

It is easy to see that the operation ⊥ defined by x
1
 ⊥ x

2
 = x

1
∗ (– x

2
) is

increasing on R. Theorem I applies to ⊥ and hence to ∗. However, to
perform M * N where M and N are fuzzy numbers, we must combine, by
means of Lemma 1, the nondecreasing (resp. nonincreasing) parts of M
with the nonincreasing (resp. nondecreasing) part of N. ∗ is in this case
said to be “hybrid.”

N.B.: Another approach to obtaining Theorem I is to use more explic-
itly α-cuts and their compatibility with the extension principle (2). In that
framework some results may appear more intuitive.

Remark   Baas and Kwakernaak (1977) have proved the following re-
sult: Let µ′ι , i = 1, n be n piecewise continuously differentiable membership
functions with finite supports. Let f be a continuously differentiable
mapping of Rn into R. At points where the respective derivatives exist, we
shall write

µ′ι(xi
) = dµ

i
(x

i
) / dx

i
,    f

i
(x) =  ∂f(x

1
, . . . ,x

n
) / ∂x

i
.

Suppose that the pointx̂ =  x̂1,  x̂2 ,  .  .  .  ,  x̂n( )[ Rn satisfies the following
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conditions:

(i) µ′
i
( x̂i )  and f

i
( x̂ ), i = 1, n, all exist and are all nonzero.

(ii) µ
1
( x̂1) = µ

2
( x̂2) = ⋅ ⋅ ⋅ = µ

n
( x̂n).

(iii) µ′
i
( x̂i ) / f

i
( x̂ ) has the same sign for each i [ {1, 2, . . . , n} .

Then x̂  is a strict relative maximum point of the mathematical program-
ming problem:

Maximize min µ
i
(x

i
)

i = l, n

subject to f(x
1
, . . ., x

n
) = f( x̂1, . . . , x̂n) = f( x̂ ).

Note that this theorem gives only sufficient conditions for relative maxi-
mum points. Moreover, it is a local version of Lemma I with different
hypotheses.

b. Properties of *

If *  is commutative, so is * .
If *  is associative, so is * . (This is easy to check from the definition of

* .)
Distributivity of *  over <,

∀(M, N, P) ∈ [  ̃3(R)]3, M * (N < P) = (M * N) < (M * P)

(obvious). The result still holds for n-ary operations. On the contrary, < is
not distributive over *  and *  is not distributive over >.

Flattening effect   Let M, N be two fuzzy sets on an interval I of R such
that µ

M
(I) = [0, ω

M
] and µ

N
(I) = [0, ω

N
]; consider M′ and N′ such that

µ
M ′ (x) = min(µ

M
(x), min(ω

M
, ω

N
)) and µ′

N
(y) = min(µ

N
(y), min (ω

M
, ω

N
));

it is easy to see that M′ *  N′ = M *  N for any operation ∗ . Thus, M and
N can be “flattened” into M′ and N′ that have the same height. When M
and N are continuous convex fuzzy sets on I, Theorem 1 can be applied
directly to M′ and N′ when ∗ is increasing or decreasing in I , replacing
[0, 1] by [0, min(ω

M
, ω

N
)].

Moreover, if M and N are continuous fuzzy numbers on I  such that
µ

M
(I) = [e

M
, 1] and µ

N
(I) = [e

N
, 1], with e

M
 < e

N
, denote {x ∈ I , µ

M
(x)

> e
N
} by [x

1
, x

2
]. If ∗ is a continuous increasing operation such that

∀t ∈]inf(I) ∗ inf(I), sup(I) ∗ sup(I)[,
∃ y ∈]inf( I), sup(I)[,  ∃ x ∈[x

1
, x

2
],   t = x ∗ y

then, denoting by M′′ the fuzzy number such that µ
M ′′(x) = max(µ

M
(x),

e
N

), we have M * N = M′′ * N, i.e., M has been flattened “from the
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bottom.” This property can be applied to (I, ∗) = (R, +) or (I, ∗) =
(R+, ⋅), but not for instance to (R, max) or (R, min).

N B.: If µ
M

(I) [0, ω
N
] and µ

N
(I) = [e

N
, 1] with e

N
 > ω

M
, then ∀z,

µ
M ( N

(z) = sup
x∈Dz

µ
M

(x) with Dz = {x ∈ I, 'y ∈ I, x ∗ y = z}.

c. Outline of a General Algorithm for the Computation of Extended
Operations   (Dubois and Prade, 1978c)

We are now able to perform the exact computation of any extended
continuous and increasing (or decreasing) n-ary operation between contin-
uous fuzzy sets within the framework of the same algorithm. Any continu-
ous fuzzy set can be decomposed into the union of convex, possibly
nonnormalized, fuzzy sets whose membership functions are either strictly
increasing or decreasing or constant in the only interval where they are not
zero (see Fig. 2).

Figure 2

Owing to the distributivity of *  over <, we can perform this operation
on each part separately using the top-flattening effect and Theorem 1. The
final result is the union of all the partial ones. Note that Theorem 1 can be
extended to piecewise continuous convex fuzzy sets by considering any
infinite-slope segment (discontinuity) as an increasing or a decreasing part
of the fuzzy number, according to the context.

Description of the Algorithm   Each fuzzy set is assumed to be discre-
tized into a finite number of membership levels ω

i
, i = 0, m (ω

0
= 0, ω

m

= 1). To each level is assigned a set p
i
k = { pk

i l
, . . . , pk

iJ
}  of real values

such that µ
Mk

(Pk
iJ
) = ω

i
, j = 1, J, where M

k
, k = 1, n, are the fuzzy sets

considered and J is function of i and k. The p
i
k  are assumed increasingly

ordered.

Example   Two fuzzy numbers and a binary operation ∗, with m= 3:

M
1
 = ω

1
/ p 1

11 
+ ω

2
/ p 1

21
+ ω

3
/ p 1

31
+ ω

2
/ p 1

22
+ ω

1
/ p 1

12
,

M
2
 = ω

1
/ p 2

11 
+ ω

2
/ p 2

21
+ ω

3
/ p 2

31
+ ω

2
/ p 2

22
+ ω

1
/ p 2

12
,
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then

M
1 * M

2
= ω1 / p11

1 ∗ p11
2 + ω2 / p21

1 ∗ p21
2 + ω3 / p31

1 ∗ p31
2

+ ω2 / p22
1 ∗ p22

2 + ω1 / p12
1 ∗ p12

2 .

The algorithm for an n-ary operation generally proceeds in four steps:

(1) Flattening:   The n fuzzy sets are changed into fuzzy sets all having
the same height.

(2) Decomposition of each fuzzy set as described above into two sets
or pieces, the set of nondecreasing “parts” and the set of nonincreasing
parts:  The constant parts between two nondecreasing (resp. nonin-
creasing) belong to the nondecreasing (resp. nonincreasing) set. The con-
stant parts, which are between parts of different kinds, belong to both. In
Fig. 2, the nondecreasing set is {T

1
, T

2
, T

3
, T

4
,}, and the nonincreasing set

is {T
2
, T

3
, T

5
, T

6
}.

(3) Operation ∗:  The operation ∗ is performed as in the above
example for every n-tuple of parts (one part for each fuzzy set) all
belonging to the same kind of sets (nondecreasing or nonincreasing). The
flattening effect may be used.

(4) Union:  For each n-tuple of parts a fuzzy set was built in step 3.
The union of these fuzzy sets is the final result.

N.B.:  The above algorithm can be easily adapted to deal with hybrid
operations.

Example  Consider the two fuzzy sets A and B pictured in Fig. 3. We
want to calculate C = A % B. % denotes the extended sum.

Figure 3
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Step 1. A and B are normalized, no flattening is necessary.
Step 2.

A: nondecreasing set {A
1
, A

2
},  nonincreasing set {A

2
, A

3
, A

4
};

B: nondecreasing set {B
1
, B

3
, B

4
, B

5
},  nonincreasing set {B

2
, B

3
, B

5
, B

6
}.

Steps 3 and 4. Let C
ij
 denote A

i 
% B

j
. The C

ij
s will be calculated in

lexicographic order:

C
11

= A
1
 % B

1
; C ← C

11
.

C
12

is not considered because A
1
 and B

2
 do not belong to the same kind

of set.
C

13
= A

1
 % B

3
. Perform C ← C

13
, the part of C

13 
between abscissas

11 and 12 is dropped.
C

14
= A

1
 % B

4
; C ← C < C

14
.

C
15

= A
1
 % B

5
; C ← C < C

15
. (The remaining part of C

13
 is dropped,

and the part of C
12

 between abscissas 12 and 14 is dropped.)
And so on.

The final result is pictured in Fig. 3.
The above procedure is certainly not the most efficient one—a lot of

redundancies remain that could be avoided through more careful analysis.
We intend here only to indicate that the algebraic calculus on rather
general fuzzy sets on R is practically possible.

Remark 1   It is clear that when discrete representations are used for
continuous fuzzy sets, it is not suitable to perform a sup–min composition
on the discrete data. The exact result is got by a direct performance of the
operation using ∗ Theorem 1.

Example:

(0.5 / 4  +  1 / 5 + 0.5 / 6)% (0.5 / 1 + 1 / 2 + 0.5 / 3)
= (0.5 / 5 + 1 / 7 + 0.5 / 9)
≠ (0.5 / 5 + 0.5 / 6 + 1 / 7 + 0.5 / 8 + 0.5 / 9),

where the latter was obtained by a direct application of sup–min composi-
tion. Here, % denotes the extended addition. (+ is, of course, an increas-
ing operation.)

This is an illustration of the noncommutativity of support descretization
and extended operations.
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2 The decomposition of a convex fuzzy set into a union of convex,
possibly nonnormalized fuzzy sets used in the above algorithm is very
similar to the decomposition of a multimodal probability distribution
considered as a mixture (linear convex combination) of unimodal ones.

3 The extension principle expresses generalized convolutions.

d.   Usual Operations on Fuzzy Numbers   (Dubois and Prade, 1978b, c)

α.   Unary Operations

Let ϕ be a unary operation; the extension principle reduces to

∀ M ∈  ̃3(R),   µϕ(M )
(z) =   sup    µ

M
(x).

x
z = ϕ(x)

Opposite of a fuzzy number: ϕ(x) = – x. ϕ(M) is denoted by –M and
is such that

∀ x ∈R, µ
–M

(x) = µ
M

(–x).

M and –M are symmetrical with respect to the axis x = 0.
Inverse of a fuzzy number: ϕ(x) = 1 / x. ϕ(M) is denoted by M – 1 and

is such that

∀ x ∈R – {0}, µ
M – 1(x) = µ

M
(1 / x)

Let us call a fuzzy number M positive (resp. negative) if its membership
function is such that µ

M
(x) = 0, ∀ x < 0 (resp. ∀ x > 0). This is denoted

M > 0 (resp. M < 0).
If M is neither positive nor negative, M – 1 is no longer convex, and

generally does not vanish when |x| → ∞ (see Fig. 4b). However, when M is
positive or negative, M – 1 is convex (Fig. 4a).

Figure 4

Scalar multiplication:    µλ ⋅ Μ M(x) = µ
M
(x / λ),     ∀λ ∈R – {0}.

Exponential of a Fuzzy number: ϕ(x) = ex . ϕ(M) is denoted eM and is
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such that

µe M x( ) =
µM ln x( ),          x > 0,

0,        otherwise.





e M is a positive fuzzy number. Moreover, e – M = (e M ) – 1.
Absolute value of a fuzzy number: The absolute value of M is denoted

abs(M);     abs M( ) =
M U – M( )    on    R+ ,    

0                   on    R− .





β.   Extended Addition and Multiplication

Addition: Addition is an increasing operation. Hence, the extended
addition (%) of fuzzy numbers gives a fuzzy number. Note that – (M %

N) = (– M) % (– N). % is commutative and associative but has no group
structure. The identity of % is the nonfuzzy number 0. But M has no
symmetrical element in the sense of a group structure. In particular,
M % (– M) ≠ 0 ∀ M ∈  ̃3(R) – R.

Multiplication:   Multiplication is an increasing operation on R+ and a
decreasing operation on R–. Hence, the product of fuzzy numbers (()
that are all either positive or negative gives a positive fuzzy number. Note
that (–M) ( N = – (M ( N), so that the factors can have different signs.
( is commutative and associative. The set of positive fuzzy numbers is not
a group for (: although ∀ M, M ( 1 = M, the product M ( M – 1 ≠ 1 as
soon as M is not a real number. M has no inverse in the sense of group
structure.

The multiplication of ordinary fuzzy numbers can be performed by
means of the general algorithm (see c) provided there is decomposition of
each factor into a positive and a negative part. Note also that

∀(M, N) ∈[  ̃3(R)]2,   (M ( N) – 1 = (M – 1) ( (N – 1)

Weak Distributivity of ( on %

Theorem 2   Provided that M is either a positive or a negative fuzzy
number and that N and P are together either positive or negative fuzzy
numbers, then

M ( (N % P) = (M ( N) % (M ( P) (8)
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Proof   The membership functions of each side are, by definition and
through an obvious reduction,

µ
M ( (N % P )

(x) =    sup    min(µ
M

(x), µ
N
(y), µ

P
(t)), (9)

z= x(y + t)

µ
(M ( N ) % (M ( P )

(z) =    sup    min(µ
M

(x), µ
N
(y), µ

M
(u), µ

P
(t)). (10)

z= xy + tu

Let ϕ(x, y, t, u) = xy + tu. When M, N, and P are positive, ϕ is increasing;
and when they are all negative, decreasing. In both cases, using Theorem l,
the upper bound of the right-hand side of (10) is reached for µ

M
(x)

= µ
N 

(y) = µ
M

(u) = µ
P
(t) either in the increasing or the decreasing parts of

the membership functions. Hence, x = u and the right-hand sides of (9)
and (10) are equal. When M and the pair (N, P) have opposite signs, we
apply the same method to

–[( – M) ( (N % P)] = M ( (N % P).    Q.E.D.

N.B.:   1.   When N and P have opposite signs, (8) no longer holds. A
counterexample will be provided later (see f). However, note that
M ( (N % P ) # (M ( N ) % (M ( P )  always holds, i.e. the right-hand side is
fuzzier.

2. Zadeh (1975, Part 1) gives a demonstration of the nondistributivity
of (() on %, in the general case, for discrete support fuzzy sets. (See also
Mizumoto and Tanaka, 1976b.)

3. Because of the nondistributivity of ( on %, some nonincreasing
operations involving sum and product cannot be extended using ( and %.
For instance, consider ϕ(x, y, z, t) = xy + ty + xz; ϕ(M, N, P, Q) is neither
(M ( N) % (Q ( N) % (M ( P) n o r [ (M % Q) ( N] % (M ( P) n o r
[(M ( (N % P)] % (Q ( N).

A property of the fuzzy exponential:

e M ( e N = e M % N    ; (M, N) [ [  ̃3(R)]2. (11)

This is obvious since e x + y is an increasing binary operation.

γ.   Extended Subtraction (*)

Subtraction is neither increasing nor decreasing. However, it is easy to
check that M * N = M % (– N) ; (M, N) [ [  ̃3(R)]2, so that M * N is a
fuzzy number whenever M and N are.

δ.   Extended Division (/)

Division is neither increasing nor decreasing. But, since M / N
= M ( (N – 1) ;(M, N) [ [  ̃3(R+) <  ̃3(R–)] 2, M / N is a fuzzy number
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when M and N are positive or negative fuzzy numbers. The division of
ordinary fuzzy numbers can be performed similarly to multiplication, by
decomposition.

e.   Extended max and min

Max and min are increasing operations in R. The maximum (resp.
minimum) of n fuzzy numbers M

1
, . . . , M

n
, denoted max (M

1
, . . . , M

n
)

(resp. min (M
1
, . . . , M

n
)), is a fuzzy number. A direct application of

theorem 1 gives a practical rule for construction of max (M
1
, . . . , M

n
) and

min (M
1
, . . . , M

n
), already stated in Dubois and Prade (1978b): the maxi-

mum (resp. minimum), max (resp. min ) is the dual operation with respect
to union (resp. intersection) because M

1
 < M

2
 < ⋅ ⋅ ⋅ < M

n
 (resp. M

1
 >

M
2
 > ⋅ ⋅ ⋅ > M

n
) is obtained by considering the nonfuzzy maximum (resp.

minimum) of the n membership functions. And max (M
1
, . . . , M

n
) (resp.

min (M
1
, . . . , M

n
)) is similarly obtained provided that we exchange the

coordinate axes 0x and 0y and that we consider increasing and decreasing
parts separately (see Fig. 5).

Figure 5 max (---) min (---).

Let M, N, P be three fuzzy numbers (i.e., convex normalized fuzzy sets
of R). The following properties hold:

max  and min  are commutative and associative operations;
they are mutually distributive,

min (M, max (N, P)) = max [ min (M, N),min (M, P)],

max (M,min (N, P)) = min [ max (M, N), max (M, P)];

absorption laws,

max (M,min (M, N)) = M, min (M, max (M, N)) = M;
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De Morgan laws,

1 * min (M, N) = max (1 * M, 1 * N),

1 * max (M, N) = min (1 * M, 1 * N);

note that 1* M is the “dual” of M : indeed, 1* (1 * M) = M:
idempotence, max(M, M) = M = min (M, M);
M % max (N, P) = max(M % N, M % P); the same with min ;
max (M, N) % min (M, N) = M % N.

(  ̃n (R)), max , min ) is thus a noncomplemented distributive lattice.
Lastly, from the results of A.e.α, we infer the following equality

max ( d̃ (A, C), d̃ (A, B, C)) = d̃ (A, B, C)

where d̃  is the fuzzy distance introduced in A.e.α. This is a compact
presentation of a triangular inequality for fuzzy distances.

ζ.   Extended Power Function

x y is defined when x > 0. We consider only this case. x y is increasing
when x ∈[1, + ∞) and y ∈[0, + ∞) and decreasing when x ∈]0, 1] and
y ∈(– ∞, 0]. So it is possible to show that

∀M ∈  ̃3([1, + ∞)),   ∀Λ > 0,   ∀P > 0  MΛ ( MP = MΛ % P

and

∀M ∈  ̃3(]0, 1]),  ∀Λ < 0,  ∀P < 0,  MΛ ( MP = MΛ % P

(because x yt u and x y + u are increasing operations for x > 1, t > 1, y > 0,
and u > 0 and decreasing for 0 < x < 1, 0 < t < 1, y < 0, and u < 0;
hence, Theorem 1 can be applied). Owing to (M ( N) – 1 = (M – 1) ( (N – 1)
and ∀M > 0, (MΛ) – 1 = M(–Λ), the formula MΛ ( MP = MΛ % P holds as
soon as M ∈  ̃3(]0, 1]) <  ̃3([1, + ∞)) and both Λ and P are positive or
negative. When m, λ, ρ are just ordinary real numbers, we have

∀(Λ, P) ∈[  ̃3(R)]2,   MΛ ( MP = MΛ % P,

∀M < 0 or ∀M > 0,   Mλ ( Mρ = Mλ + ρ.

N.B.: Here, M λ does not denote the λth power of the fuzzy set M in the
sense of II.1.B.f.

e.   Fast Computation Formulas

α. L-R  Representation of Fuzzy Numbers   (Dubois and Prade,
1978b, c)

A function, usually denoted L or R, is a reference function of fuzzy
numbers iff (1) L(x) = L(– x); (2) L(0) = 1; (3) L is nonincreasing on
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[0, + ∞). For instance, L(x) = 1 for x ∈[– 1, +1] and 0 outside; L(x)
= max(0, 1 –|x|p), p > 0; L(x) = e– | x | p, p > 0; L(x) = 1 / (1 + |x|p), p > 0.

A fuzzy number M is said to be an L-R type fuzzy number iff

  

µM x( ) =
L m − x( ) / α( )    for    x < m, α > 0,

R x − m( ) / β( )    for    x > m, β > 0.







L is for left and R for right reference. m is the mean value of M. α and ß
are called left and right spreads, respectively. When the spreads are zero, M
is a nonfuzzy number by convention. As the spreads increase, M becomes
fuzzier and fuzzier. Symbolically, we write

M = (m,α, ß)
LR

.

β.   Addition

Let us consider the increasing parts of two fuzzy numbers M = (m,α,
ß)

LR
 and N = (n, γ, δ)

LR
. Let x and y be the unique real numbers such that

L((m – x) / α) = ω = L((n – y) / γ),

where ω is a fixed value in [0, 1]. This is equivalent to

x = m –α L – 1(ω),     y = n –γ L – 1(ω),

which implies
z = x + y = m + n – (α + γ ) L–1(ω)      and

L
m + n − z

α + γ






= ω .

The same reasoning holds on decreasing parts of M and N and

R
z − m + n( )

β + δ






= ω .

Using Theorem 1, we prove

(m, α, ß)
LR

% (n, γ, δ)
LR

= (m + n, α + γ, ß + δ)
LR

. (12)

More generally,

(m, α, ß)
L′R′ % (n, γ, δ)

L′R′ = (m + n, 1, 1,)
L′′R′′

with
L′′ = (αL – 1 + γL′ – 1) – 1,   R′′ = (ßL – 1 + δL′ – 1) – 1.

The formula for the opposite of a fuzzy number is

– (m, α, ß)
LR

 = (– m, ß, α)
RL

. (13)

Note that the references are exchanged.
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From (12) and (13) we deduce the formula for subtraction

(m, α, ß)
LR

* (n, γ, δ)
RL

 = (m – n,α + δ, ß + γ)
LR

. (14)

γ.   Multiplication

Using the same reasoning as above, for positive fuzzy numbers, we get

z = x ⋅ y = m ⋅ n – (mγ + nα)L – 1(ω) + αγ (L – 1(ω))2.

Without any approximation, this second-order equation in L–1(ω), whose
discriminant is (mγ – nα)2 + α γ z > 0, always has one positive root when
z < mn. Using Theorem l, we could deduce explicitly µ

M ( N
. Usually,

M ( N will not be an L-R type fuzzy number.
Nevertheless, if we neglect the term αγ (L–1((ω))2, provided that α and γ

are small compared with m and n, and / or ω is in the neighborhood of 1,
the above equation becomes simpler, and we infer the approximation
formula (M > 0, N > 0)

(m, α, ß)
LR

( (n, γ, δ)
LR

 . (mn, mγ + nα, mδ + nß)
LR

. (15)

When M < 0 and N > 0, (15) becomes

(m, α, ß)
RL

( (n, γ, δ)
LR

 . (mn, nα – mδ, nß + mγ)
RL

. (16)

When M < 0 and N < 0, (15) becomes

(m, α, ß)
LR

( (n, γ, δ)
LR

 . (mn, – nß, – mδ, – nα – mγ)
RL

. (17)

When spreads are not small compared with mean values, other approxi-
mation formulas can be used to give the rough shape of µ

M ( N
; for

instance, when M > 0 and N > 0,

(m, α, ß)
LR

( (n, γ, δ)
LR

 . (mn, mγ + nα – αγ, mδ + nß + ßδ)
LR

. (18)

The membership function defined on the right-hand side of (18) coincides
with µ

M ( N
 at at least three points: (mn,1), [(m –α)(n – γ), L(l)], [(m + ß)

(n + δ), R(1)]. When more precision is required, it is always possible to get
more points of µ

M ( N
, such as (x

L
⋅ y

L
, ω)(x

R
⋅ y

R
, ω), where µ

M
(x

L
)

= µ
N
(y

L
) = µ

M
(x

R
) = µ

N
(y

R
) = ω, and x

L
, y

L
 (resp. x

R
, y

R
) are on the left

(resp. right) parts of µ
M
 and µ

N
.

N.B.:   Scalar multiplication.   Obviously, from d.α,

∀λ > 0, λ [ R, λ ( (m, α, ß)
LR

 = (λm, λα, λß)
LR

,

∀λ < 0, λ [ R, λ ( (m, α, ß)
LR

 = (λm, –λß, –λα)
RL

.

δ.   Inverse of a Fuzzy Number

We know that µ
M – 1(x) = µ

M
(1 / x) ∀x ≠ 0, ∀ M [   ̃3(R – {0}). Let M be

a positive L-R type fuzzy number. The equation of the right part of M – 1
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is

  
µ

M−1 x( ) = L
1 −  mx

α x




 ,      x >1 / m,

when M = (m, α, ß)
LR

. Note that the right part of M – 1 is built with the
left part of M. Moreover M – 1 is neither a L-R type fuzzy number, nor an
R-L type. But if we consider only a neighborhood of 1 /m, (1 –mx) / αx
.((1 / m) – x) / (α / m2) and M – 1 is approximately of R-L type:

  m, α , β( )LR

−1 .(m – 1, ßm– 2, αm – 2)
RL

. (19)

A similar formula holds when M < 0 since – (M – 1) = (– M) – 1.

e.   Division of Fuzzy Numbers

Using the identity M / N = M ( N – 1, and (15), (19) for positive L-R
and R-L, type fuzzy numbers, the following approximate result can be
found:

(m, α, ß)
LR
/ (n, γ, δ)

RL
. m / n,

δ m + α n

n2 ,  
λ m + β n

n2







LR

. (20)

Similar formulas could be given when M and / or N are negative.

ζ.   Maximum and Minimum of Fuzzy Numbers

Figure 5 shows that when M and N are L-R type fuzzy numbers,
max (M, N) and min (M, N) are not always such since they may be built
with parts of both M and N. This happens when µ

M
 and µ

N
 have more

than one intersection point. More precisely, if M and N have at most one
intersection point,

min (M, N) = M,   max (M, N) = N   iff   m < n. (21)

If M and N have two or three intersection points, x
i
, i = 1, 3, they are

always such that x
1
< m < x

2
< n < x

3
 when m < n and left (resp. right)

parts of M and N are strictly increasing (resp. decreasing). Moreover,
µ

M
(x

2
) > max(µ

M
(x

1
), µ

M
(x

3
)).

When n > m and max(µ
M

(x
1
), µ

M
(x

3
)) is low, (21) still holds approxi-

mately. When |x
1
– x

3
| is small with respect to m and n, we can use the

formulas

max ((m, α, ß)
LR

, (n, γ, δ)
LR

) . (max(m, n), min(α, γ), max(ß, δ))
LR

, (22)

min ((m, α, ß)
LR

, (n, γ, δ)
LR

) . (min(m, n), max(α, γ), min(ß, δ))
LR

. (23)

When m = n, (22) and (23) exactly hold.
When more than three intersection points exist, no approximation for-
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mula seems available. When M and N have intervals of constant member-
ship, the above reasoning holds replacing “intersection points” by
“intersection intervals”; formulas will be given below.

h.   Flat Fuzzy Numbers

A flat fuzzy number (see Fig. 6) is a fuzzy number M such that
'(m

1
, m

2
) [ R, m

2
 < m2, and µ

M
(x) = 1 ;x [ [m

1
, m

2
]. A flat fuzzy num-

ber can model a fuzzy interval. An L-R type flat fuzzy number M is
defined as

µ
M

(x) = L((m
1
– x) / α)     x < m

1
,     α > 0,

= R((x – m
2
) / ß)     x > m

2
,     ß > 0,

= 1 otherwise.

More briefly, we denote (m
1
, m

2
, α, ß)

LR
 by M where L and R are

reference functions.

Figure 6

N.B.:   A flat fuzzy number could be represented with only three param-
eters, with flat references, but it would be less convenient than four
because the size of the flat part would depend on the values of the spreads.
Hence, the four-parameter representation is more general since it avoids
this dependency. Formulas for L-R type fuzzy numbers are easily con-
structed; for instance,

(m
1
, m

2
, α, ß)

LR
% (n

1
, n

2
, γ , δ )

LR
= (m

1
+ n

1
, m

2
+ n

2
, α + γ , ß + δ )

LR
,

(24)
(m

1
, m

2
, α, ß)

LR
((n

1
, n

2
, γ, δ )

LR
. (m

1
n

1
, m

2
n

2
, m

1
γ + n

1
α, m

2
δ + n

2
ß)

LR
,

(25)
(25) holds for M and N > 0.

f.   Interpretation and Comments

We already hinted that a fuzzy number M can model an ill-known
quantity whose value is “approximately m” and that a flat fuzzy number
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can be an interval whose boundaries are not sharp, for instance, a fuzzy
tolerance interval. A fuzzy set of R having distinct maxima whose member-
ship values are 1 can model a set of imprecise measures of a given
phenomenon. When the maxima have different membership values, they
may express the degree of quality of the information inherent in these
maxima.

Hence, the maximum membership value of a fuzzy number is inter-
preted as a grade of reliability, and its spreads model the imprecision of a
measurement. The flattening effect supports this interpretation: the reli-
ability of M * N is the least of the reliabilities of M and N.

The distributivity of any extended operation on the union of fuzzy sets is
easily interpreted: for instance, it seems quite natural that (“approximately
2” or “approximately 3”) + “approximately 1” gives “approximately 3” or
“approximately 4.” On the contrary, a number whose value is “ap-
proximately 1” and “approximately 3” has less meaning: this is consistent
with the nondistributivity of any extended operation on the intersection of
fuzzy sets; such a number results from conflicting sources of information.

The problem of identification of a membership function is considered at
the beginning of Part IV.

Note that our interpretation of fuzzy numbers in the framework of
tolerance analysis is supported by the fact that formulas (12) et seq.
generalize those of nonfuzzy tolerance analysis. The algebra of real inter-
vals as developed by Moore (NF 1966) is entirely consistent with our
results. In particular, Moore points out the nondistributivity of the product
of intervals over subtraction of intervals of R+, i.e., ∆(a(b – c)) ≠ ∆(ab –
ac) where ∆x denotes the absolute error in x, and a, b, and c are positive.

The main appeal of formulas (12) et seq. is to extend tolerance analysis
to fuzzy intervals, without increasing the amount of computation too
much, which makes it possible on a practical level: to be represented a
nonfuzzy interval needs two parameters, a fuzzy number requires three, a
fuzzy interval four. A manipulation of these parameters is enough to
obtain the final membership function. Lastly, the L-R representation is
general enough to encompass many shapes of rnembership functions.

NB.:   Formula (12), which is for addition, allows an empirical compari-
son between the sup-min and sup–product extension principles: Let M
and N be two L-L fuzzy numbers, with L(x) = e – x2, M = (m, α, ß)

LL
,

N = (n,γ, δ )
LL

. Using the max-product extension principle, it is very easy
to show that, using this particular reference,

M N = m + n, α 2 + γ 2( ) , β 2 + δ 2( )





LL
(26)
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where denotes the sup-product extended addition.† Since M % N
= (m + n, α + γ, ß + δ)

LL
, M  N # M % N; but this result holds for any

extended operation as well, and any real fuzzy sets.

g.   Comparison of Fuzzy Numbers

When comparing fuzzy numbers, two kinds of questions may arise:

(1) What is the fuzzy value of the least or the greatest number from a
family of fuzzy numbers?

(2) Which is the greatest or the least among several fuzzy numbers?

The answer to the first question is given by the use of the operations max
andmin . The above two questions are not simultaneously answered
because, given a family M

l
, . . . , M

n
 of fuzzy numbers, max (M

l
, . . . ,

M
n
) (resp.min (M

l
, . . . , M

n
)) is not necessarily one of the M

i
.

Hence, another method is required to answer question 2. We must
evaluate the degree of possibility for x [ R, fuzzily restricted to belong to
M [  ̃3(R), to be greater than y [ R fuzzily restricted to belong to N
[  ̃3(R).
The degree of possibility of M > N is defined as

v (M > N) =    sup    min(µ
M

(x), µ
N
(y)) (27)

x, y : x > y

This formula is an extension of the inequality x > y according to the
extension principle. It is a degree of possibility in the sense that when a
pair (x, y) exists such that x > y and µ

M
(x) = µ

N
(y) = 1, then v (M > N)

= 1 ,
Since M and N are convex fuzzy numbers, it can be seen on Fig. 7 that

v (M > N) = 1      iff M > N,

v (N > M) = hgt(M > N) = µ
M

(d)

Figure 7

†M  N has the same reference function L and M or N only because we use an exponential
function; more generally, this is not true.
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where d is the ordinate of the highest intersection point D between µ
M
 and

µ
N
. Note that hgt(M > N) is a good separation index for two fuzzy

numbers—the closer to 1 is hgt(M > N), the harder it is to know whether
M is either greater or less than N. (> is actually a fuzzy relation (see
Chapter 3) between fuzzy numbers.)

When M = (m, α, ß)
LR

, N = (n, γ, δ)
RL

, the ordinate of D is given by the
equat ionL( (n – d)/δ ) = L ( (m – d) /α = µ

M
(d) , i .e. , µ

M
(d) = L((m – n)/

(α + δ)) if m > n. Note that the type of M is LR when that of N is RL.
To compare M and N, we need both v (M > N) and v (N > M). If, for

instance, v (M > N) = 1, we know that either M > N, or M and N are too
close to be separated. We may then choose a threshold θ and admit that
M >θ N as soon as v (N > M) < θ.† For L-R and R-L type fuzzy num-
bers, this latter rule reduces to

  

N >θ M     iff      n– m > β + γ    θ = R 1( )( ),
M >θ N     iff      m– n > α + δ    θ = L 1( )( ).







When min(v (M > N), v (N > M)) > θ, we shall say that M and N are
approximately equal, in the sense that they may be very close after a
learning process. This is a very weak equality between fuzzy numbers.
Stronger equalities could be defined using similarity indices defined in
l.E.c.ß. The consistency of fuzzy numbers works much better as a separa-
tion index than as a similarity index.

N.B.:  1.  Comparison of M and N is equivalent to that of M * N and
0 because µ

M * N
(0) = hgt(M > N) ;M, N [  ̃3(R). Hence if M and N are

convex and v (M > N) = 1, v (N > M) = µ
M * N

(0).
2. All results hold for flat fuzzy numbers.
3. We could define M s N by max (M, N) = M and / or min (M, N)

= N. Such a definition is not very good because M can be very close to N,
and still M s N can be true while neither M >θ N nor N >θ M holds.

h.   Fuzzy Equations

A fuzzy equation is an equation whose coefficients and / or variables are
fuzzy sets of R. The concept of equation can be extended to deal with
fuzzy quantities in several ways. Consider the very simple equation a ∗ x
= b where (a, b) [ R2, x is a real variable, and ∗ is a group operation on
R, so that the unique solution is x = a – 1 ∗ b where a – 1 is the inverse of a.

α.   A * x = B, A, B [  ̃3(R), x [ R

The above equation means that the fuzzy set A * x is the same as B.
Note that it is forbidden to shift terms from one side to another. For

† >θ is a crisp relation and M >θ N means “M is greater than N at level θ.”
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instance, the equation A * x = B is not equivalent to (A * x) * B = 0: the
first may have solutions, while the second surely does not, since (A * x) *

B is fuzzy and 0 is a scalar.

β.   A * x # B

The above equation is a relaxed version of α. The fuzzy set A * x must
be contained in B. B could be for example a prescribed tolerance con-
straint on the output of a given device, A a known error rate of its input,
and x a characteristic of the device. The solution of the equation is a
tolerance interval for x.

γ.   A * x . B

The above equation is another relaxed version of α. The fuzzy set A * x
must be approximately equal to B. . is defined as a weak equality in the
sense of l.E.c.α or an e-equality in the sense of l.E.c.ß. Besides, we can
interpret A * x . B as “neither A * B >θ B nor B >θ A * x hold.” Once
more the range of x is generally an interval of R.

δ.   A *  X : [ 3(R), b [ R

The above equation is not related to the preceding ones. It means, is
there a real fuzzy set X such that ;v[ [0, 1], ;a [ R satisfying µ

A
(a) = v,

'x [ R, µ
X
(x) = v, and a∗ x = b? Here, since ∗ is a group operation, it is

easy to check that X = A– 1 * b. This type of fuzzy equation could be
generalized with a fuzzy right-hand side B. It is consistent with the
extension principle.

Equations of type δ may be interpreted in the following way: knowing
the fuzzy tolerance interval A of a quantity a, what is the fuzzy tolerance
interval X of the quantity x that must satisfy the requirement a ∗ x = b?

N.B.:  α, ß, γ can be generalized to fuzzy variables.
When coefficients are L-R type fuzzy numbers, the actual solution of all

fuzzy equations is made much easier. Usually fuzzy equations will be
equivalent to a system of nonfuzzy equations (see III.4).

i.   Fuzzy Matrices

A fuzzy matrix is a rectangular array of fuzzy numbers. Obviously, there
is no difficulty in performing additions on fuzzy matrices. But the product
of fuzzy matrices is no longer associative because of the lack of complete
distributivity of ( over %. A sufficient condition to preserve associativity
is to work only with positive fuzzy matrices (i.e., matrices all of whose
elements are positive fuzzy numbers), only with negative fuzzy matrices, or
only with diagonal fuzzy matrices.
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The problem of the inversion of a fuzzy square matrix M in the sense of
h.δ (find M′ such that M ( M′ ≡ I where I is the ordinary identity matrix)
was approximately solved by Moore (NF 1966) when the fuzzy numbers
are just ordinary intervals. He used an algorithm based on Hansen’s
method (Hansen, NF 1965; Hansen and Smith, NF 1967).

The problem of finding the fuzzy eigenvalues of a fuzzy matrix can be
solved in the framework of systems of linear fuzzy equations (III.4.A.b).

j.   Entropy of a Fuzzy Number

Let M be an L-R fuzzy number and s an entropy function that satisfies
the requirements of (1.H). M = (m,α, β)

LR
 where L, R are such that

s L x( )( )dx
–∞

0

∫ = kL < + ∞    and    s R x( )( )dx
0

+ ∞

∫ = kR < + ∞.

The entropy d(M) of M is

d M( )  =
−∞

m

∫ s L
m − x

α












dx +
m

+∞

∫ s R
x − m

β












dx

= α
−∞

0

∫ s L x( )( ) dx + β
0

+∞

∫ s R x( )( ) dx,

or
d(M ) = k

L
α + k

N
ß. (28)

Thus, for a given L-R type, the entropy of a fuzzy number is a linear
function of its spreads. It is easy to check that

d (M % N) = d(M) + d(N),     d(M ( N) . md(N) + nd(M)

(n denotes the mean value of N).

C.    EXTENDED FUZZY SETS

a.   Type m or Level p Fuzzy Sets

Let A be an ordinary fuzzy set on a universe X. In Zadeh’s notation,
A = e

x
µ

A
(x) / x.

Zadeh (1972) called “fuzzification” of A the change of x or µ
A
(x) into a

fuzzy set on X or [0, 1], respectively, for every x [ X. When µ
A
(x) becomes

fuzzy, A becomes a type 2 fuzzy set (1.G.d). This transformation of an
ordinary fuzzy set into a type 2 fuzzy set by blurring the grades of
membership is called g-fuzzification (Zadeh, 1972). When x is blurred into
a fuzzy set ̃x  on X, A is a fuzzy set on   ̃3(X), and is said to be a level 2 fuzzy
set (Zadeh, Reference from IV.2, 1971).
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More generally, A is said to be a level p fuzzy set iff it is a fuzzy set on
  ̃3p – 1(X) recursively defined as

  ̃31(X) =   ̃3(X),       ̃3p(X) =   ̃3(  ̃3p – 1(X)),    p > 1.

A level p fuzzy set can be viewed as a hierarchy of fuzzy sets.
If X is finite (| X | = n) and [0, 1] discretized into k grades of membership,

the number of level 2 fuzzy sets of X is k[k n], that of type 2 fuzzy sets of X
is [kk]n. Since k[k n] > [kk]n as soon as k > 2 (strict inequality when
k > 2, n > 2), there are always more level 2 fuzzy sets on X than those of
type 2. More precisely, there is no bijection between   ̃32

(X) and   ̃32(X),
The two notions are not equivalent: a type 2 fuzzy set is a fuzzy-valued
fuzzy set, a level 2 fuzzy set is a fuzzy set of fuzzy sets.

Zadeh (1972) introduced the notion of s-fuzzification (s for support). In
this fuzzification each singleton of X, denoted by 1 /x, is changed into a
fuzzy set K(x), clustered around x; the mapping K from X to   ̃3(X) is
called the kernel. The result of an s-fuzzification is a fuzzy set on X:

F(A, K) = 
  x ∈X
U  µ

A
(x)K(x) (29)

where µ
A
(x)K(x) = e

X
µ

A
(x)µ

k(x)
(x′ ) / x′ ;x [ X Note that a level 2

fuzzy set can always be reduced to an ordinary one in a similar way:

  

A = µ i / Ai,

i = l

k

∑ ,        Ai∈ ∈3̃ X( )

is changed into   Ui = l
k µ

i
A

i
.

The effect of an s-fuzzification is to make a fuzzy set more fuzzy.

b.   Extended Set-Theoretic Operations for Type 2 Fuzzy Sets

In 1.G.d we defined set-theoretic operations on fuzzy sets of type 2, by
induction from the lattice structure of (  ̃3([0, 1]), <, >, –). This definition
proved to be semantically very poor.

Now, since a fuzzy set of type 2 is obtained by assigning fuzzy member-
ship values to elements of X, we can, following the same idea, extend the
set-theoretic operations of ordinary fuzzy set theory to allow them to deal
with fuzzy grades of membership; this is done using the extension princi-
ple. Let A and B be fuzzy sets of type 2 of X. µ

A
(x) and µ

B
(x) belong to

  ̃3([0, 1]). We write

µ
A D B

 (x)= max (µ
A
(x), µ

B
(x))    ;x [ X, (30)

µ
A C B

 (x)= min (µ
A
(x), µ

B
(x))    ;x [ X, (31)

µ
A
- (x) = 1 * µ

A
(x)       ;x [ X. (32)



64II.2 Extended Real Operations

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

C, D, - were first proposed by Mizumoto and Tanaka (1976a). These
operators allow overcoming the paradox quoted in l.G.d: when µ

A
(x) is

approximately l
A
(x), µ

B
(x) approximately l

B
(x), and l

A
(x) > l

B
(x), we

know from B.d that µ
A D B

(x) will be “approximately l
A
(x).”

On the contrary, the structure of   ̃3([0, 1]) is poorer: (  ̃3((0, 1)),D, C, -) is
only a pseudocomplemented structure. The structure is pseudocomple-
mented because M [  ̃3([0, 1]) iff 1 * M [  ̃3([0, 1]). However, among the
properties listed in B.d, distributivity does not hold for fuzzy sets of [0, 1],
as proved by Mizumoto and Tanaka (1976a), neither does absorption hold,
existence of a O and a 1, identity, and excluded middle laws.

If we restrict ourselves to the set N([0, 1]) of fuzzy numbers of [0, 1], the
structure is richer: (N([0, 1]), D, C, -) is a pseudocomplemented complete
distributive lattice, and all the properties of ordinary set-theoretic opera-
tors on fuzzy sets are satisfied, i.e., commutativity, associativity, idempo-
tency, distributivity, identity, A C Ø = Ø, A D X = X, absorption, De
Morgan’s laws, involution (see l.B.d). Only the equivalence and symmetri-
cal difference formulas fail to hold any longer. This result stems from (see
Dubois and Prade, Reference from III.1, 1978b):

max [ min (M, N), min (1 * M, 1 * N)] ≠ min [ max (M, 1 * N),
max (1 * M, N)] for some M, N [ N([0, 1]).

min [ max (M, N), max (l * M, 1 * N)] ≠ max [ min (M, 1 * N),
min (1 * M,N)] for some M, N [ N([0, 1]).

Note that fuzzy-number-valued grades of membership are intuitively
appealing since they may model our imprecise knowledge of these grades.
Fuzzy numbers of [0, 1] are also easily combined thanks to the algebraic
formulas provided in section B. Thus, intuitive meaning and practical
reasons induce us to adopt N([0, 1]) as the best valuation set for type 2
fuzzy sets.

To define inclusion of fuzzy-number-valued fuzzy sets, we must compare
fuzzy grades of membership, in order to be consistent with the extension
principle. For instance, we may write

A E B     iff     ; x [ X,  min (µ
A
(x), µ

B
(x)) = µ

A
(x)

and   max (µ
A
(x), µ

B
(x)) = µ

B
(x).

This definition is somewhat rigid (see B.g,N.B.3). We may choose

A E B  iff  ; x [ X, v (µ
B
(x) > µ

A
(x)) = 1,

v (µ
A
(x) > µ

B
(x)) < u

where u is a threshold (see B.g). Set equality may be also very strict:
(A = B ⇔ µ

A
(x) = µ

B
(x) ; x [ X) can be relaxed using the similarity indi-

ces given in l.E.
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Remarks 1   (30), (31), (32) restricted to act on interval-valued member-
ship grades give operators for Φ-fuzzy sets (Sambuc, Reference from II.1)
and multivalued quantities (Grattan-Guiness, Reference from II.1): Exam-
ple:

max ([a, b], [c, d]) = [max(a, c), max(b, d)],
min ([a, b], [c, d]) = [min(a, c), min(b, d)],

1 * [a, b] = [1 – b, 1 –a]; ;[a, b], [c, d] # [0, 1].
2   The set of intervals of [0, 1] is only partially ordered undermax and

min . In the context of an application, Ponsard (Reference from V, 1977a)
introduced an inclusion of fuzzy sets so as to recover a linear ordering. The
corresponding inequality of membership values is [a, b] < [c, d] iff either
b < d or (b = d and a < c). An alternative definition is [a, b] < [c, d] iff
either a < c or (a = c and b < d). Using one of these inclusions, the set of
intervals of [0, 1] is linearly ordered. The union of Φ-fuzzy sets is now
defined by means of the operator W on the interval-valued membership
grades:

[a, b]W[c, d] =

  

a, b[ ]      iff     c, d[ ]< a, b[ ]
c, d[ ]      iff     a, b[ ]< c, d[ ].







The intersection of Φ-fuzzy sets using the operator M is

[a, b]M[c, d] =

  

a, b[ ]      iff     a, b[ ]< c, d[ ],
c, d[ ]      iff     c, d[ ]< a, b[ ].






Under W and M the set of intervals of [0, 1] is a distributive linear

ordered lattice. W and M are associative, commutative, idempotent, and
satisfy the law of absorption. Lastly,

[a, b]M[c, d] = [a, b]W[c, d]     iff     [a, b] = [c, d].
[a, b]M[c, d] = [c, d]     iff     [a, b] W[c, d] = [a, b].

c.   Some Further Operations on Fuzzy Sets of Type 2

mth power of a fuzzy set of type 2 (Zadeh, 1975):  Let A be a fuzzy set of
type 2 on X. µ

A
(x) is a fuzzy set on [0, 1]:

µ A x( ) = ∫ 0,1[ ] λ t( ) / t.

Just as for the definition of union, intersection, or complementation of
type 2 fuzzy sets, the extension principle provides us a way to define the
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mth power of A m of A as

µ
A m(x)=#

[0, 1]
λ(t) / t m = (µ

A
(x))m(see II.2.B.dζ).

For instance, for m = 2, if µ
A
(x) is a fuzzy number, µ

A 2 (x) is also a fuzzy
number that is less than µ

A
(x) in the sense of min . It must be clear that

µ
A 2 (x) is completely different from #

[0, 1]
(λ(t))2 / t = µ

A′(x) (see Fig. 8), the
second power of µ

A
(x) in the sense of II.l.B.f.

Figure 8

Addition:   Let us consider the following level 2 fuzzy set M on R: M is

a fuzzy set of L-R fuzzy numbers Mλ. M = #λ / Mλ where Mλ = (m, αλ,
ßλ)LR

. Symbolically, we write M = (m, α̃ , β̃ )
LR

 where µα̃ (αλ) = λ = µ
β̃
(ßλ).

M has an ordinary mean value but fuzzy spreads. M is represented in Fig.
9. M may be also viewed as a type 2 fuzzy number: µ

M
 (m

0
) is sketched in

the right part of Fig. 9.

Figure 9

If we suppose that the spreads α̃  and β̃  are l-r type fuzzy numbers,
addition can easily be extended to level 2 fuzzy sets of R, like M = (m, α̃

lr
,

β̃ lr
)

LR
 and N = (n, γ̃ lr , δ̃ lr

)
LR

, through the formula

M  N = (m + n, α̃
lr
 % γ̃ lr ,  β̃lr

% δ̃ lr
 )

LR
. (33)

Such fuzzy-fuzzy numbers can model situations where only the rough
shape of the characteristic functions of the fuzzy numbers is known.



67II.2 Extended Real Operations

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

References

Baas, S. M., and Kwakernaak, H. (1977). Rating and ranking of multiple-aspect alternatives
using fuzzy sets. Automatica 13, 47–58. (Reference from IV.3.)

Borghi, O., Marchi, E., and Zo, F. (1976). A note on embedding of fuzzy sets in a normed
space. Kev. Union Mat. Argent. Assoc. Fis. Argent. 28, No. 1, 36–41.

Dubois, D., and Prade, H. (1978a). Comment on “Tolerance analysis using fuzzy sets” and
“A procedure for multiple aspect decision making.” Int. J. Syst. Sci. 9, No. 3, 357–360.

Dubois, D., and Prade, H. (1978b). Operations on fuzzy numbers. Int. J. Syst. Sci. 9, No. 6,
613–626.

Dubois, D., and Prade, H. (1978c). Fuzzy real algebra: Some results. In “Fuzzy Algebra,
Analysis, Logics,” Tech. Rep. TR-EE 78 / 13. Purdue Univ., Lafayette, Indiana. [Int. J.
Fuzzy Sets Syst. 2, 327–348 (1979).]

Dubois, D., and Prade, H. (1978d). Systems of linear fuzzy constraints. In “Fuzzy Algebra,
Analysis, Logics,” Tech. Rep. TR-EE 78 / 13. Purdue Univ., Lafayette, Indiana. [Int. J.
Fuzzy Sets Syst. 3, 37–48 (1980).] (Reference from III.4, 1978b.)

Jain, R. (1976). Tolerance analysis using fuzzy sets. Int. J. Syst. Sci. 7, No. 12, 1393–1401.
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Chapter 3
FUZZY RELATIONS

The concept of a fuzzy relation is introduced naturally, as a generaliza-
tion of crisp relations, in fuzzy set theory. It can model situations where
interactions between elements are more or less strong. Fuzzy relations can
be composed, and this composition is closely related to the extension
principle.

A great deal of work has been done in the field of binary fuzzy relations.
Notions such as equivalence and ordering have been generalized to fuzzy
similarity and fuzzy ordering. However, it has been made clear that most
of the mathematical tools that have been developed concerning this topic
are not new. Similarities are very connected to distances. Fuzzy preorder-
ings still contain undominated and undominating elements.

More original are the equations of fuzzy relations. Moreover, their
resolution may prove to be useful in the framework of computerized
diagnosis.

More sophisticated fuzzy relations are briefly outlined at the end of this
chapter.

A.   n-ARY FUZZY RELATIONS

a.   Fuzzy Relations and Fuzzy Restrictions

Let X
1
, • • • , X

n
 be n universes. An n-ary fuzzy relation R in

X
1
 ×• • •× X

n
 is a fuzzy set on X

1
 × ••• × X

n
 (Zadeh, Reference from

II.l, 1965). An ordinary relation is a particular case of fuzzy relations.
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Example n = 2. X
1
 = X

2
 = R+ -{0}. R = “much greater than” may be

defined by m
R
(x, y) = 0 iff x < y and m

R
(x, y) = min(1,(x – y)/9y) iff

x > y; ,m
R
(x, y) = 1 as soon as x > 10y.

Let n = (n
1
, . . . ,n

n
) be a variable on X = X

1
 × ••• × X

n
. A fuzzy

restriction, denoted R(y), is a fuzzy relation R that acts as an elastic
constraint on the values, elements of X, that may be assigned to a variable
n (Zadeh, 1975a). In this context a variable is viewed as a 3-tuple (n, X,
R(n)); n is the name of the variable.

A fuzzy relation R is normalized iff the fuzzy set R is normalized.
The projection of a fuzzy relation R on X

i1
 × ••• • × X

ik
, where

(i
1
. . . , i

k
) is a subsequence of (1,2, . . . , n), is a relation on X

i1
, × ••• ×

X
ik
 defined by (Zadeh, 1975a):

proj [R; X
i1
. . . ,X

ik
]

         
  

= sup µR x1, . . . , xn( )
Xi1× L × Xik x j1

, L , x
ji

∫ / xi1, . . . , xik( ) (1)

where (j
1
,. . . , jl ) is the subsequence complementary to (i

1
, . . . , i

k
) in

(l, . . . , n).
N.B.: Projections are also called marginal fuzzy restrictions.
Conversely, if R is a fuzzy set in X

i1
 × ••• × X

ik
, then its cylindrical

extension in X
1
 × ••• × X

n
 is a fuzzy set c(R) on X

1
, × ••• × X

n
 defined

by (Zadeh, 1975a)

     
  
c(R) = µR xi1

, . . ., xik( )
X1× L ×Xn
∫ / x1, . . . , xn( ). (2)

Let R and S be two fuzzy relations on X
1
 ×•••× X

r
 and X

s
 × •••• ×

X
n
, respectively, with s < r + 1: the join of R and S is c(R) " c(S), where

c(R) and c(S) are cylindrical extensions on X
1
 × ••• × X

n
.

Example n = 3. X
i
 = R, i = 1,3. (x,y,z) is fuzzily restricted to be on a

sphere (m
R
(x,y,z) =e–k2|x2+ y2+ Z2–R2|). The projection of R on the (x, y)

plane has membership function

      µR(x,  y) = e
− k2 x2 +y2 −R2

           iff      x2 + y2 > R2,

m
R
(x, y)= 1 otherwise. We obtain a fuzzy disk. The cylindrical extension

of this fuzzy disk is the fuzzy cylindrical volume whose base is the fuzzy
disk and which contains the fuzzy sphere.

N.B.: A section of a fuzzy relation R is obtained by assigning constant
values to some of the variables fuzzily restricted by R. In the above
example a section of the fuzzy sphere is a fuzzy circle.
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In terms of their cylindrical extensions the composition of two fuzzy
relations R and S respectively on X

1
 × • • • × X

r
 and on X

s
× • • • ×X

n

with s < r is expressed by (Zadeh, 1975a)

R  °  S = proj[ c(R) > c(S); X
1
 × • • • ×  X

s–1
 ×  X

r+ 1
× • • •  × X

n
].    (3)

R ° S is a fuzzy relation in the symmetrical difference of the universes of
R and S.

b. Interactivity (Zadeh, 1975b)

An n-ary fuzzy restriction R(v
1
, . . . , v

n
) is said to be separable iff

R(n
1
, . . . ,n

n
) = R(n

1
) × • • • × R(n

n
) where × denotes the cartesian

product (2.A.a) and R(n
i
) is the projection of R on X

i
, i.e.,

 µ R x1,. . ., xn( ) = min
i=1, n

µproj[R;Xi ] xi( ).
Note that in terms of cylindrical extension, the above formula can be
written

          
  
R = c(proj[R; Xi ])

i=1, n
I . (4)

R is separable iff it is the join of its projections. If R is separable, so are all
its marginal fuzzy restrictions. The variables n

1
. . . , n

n
 are said to be

noninteractive iff their restriction R(n
1
, . . . ,n

n
) is a separable fuzzy restric-

tion. It is easy to check that

R(n
l
, • • • , n

n
) # R(n

1
) × • • • × R(n

n
) = > c(proj[R(n

1
, • • • , n

n
);X

i
]).

i = 1, n
(5)

Figure 1 sketches two binary nonfuzzy relations. On the left-hand side the
choice of a given value in R(n

1
) for n

1
 does not at all restrict the choice of

a value in R(n
2
) for n

2
. This pair of values will always satisfy the relation

R. On the contrary, the choice of a value for n
2
 depends upon the value of

n
1
 and conversely, in order to satisfy the relation of the right-hand part of

Fig. 1. It is an example of noninteractivity and interactivity, respectively,
for nonfuzzy relations.

Note that the ordinary product of projections of a given relation R,
proj [R; X

1
] proj [R; X

2
]· . . . ·proj [R; X

n
] (see 1.B.e) is an interactive rela-

tion contained in >
i =1, n

 c(proj [R; X
i
]). As a matter of fact, the separable

restriction R(n
1
) × • • • × R(n

n
) is associated with the greatest (in the sense

of Zadeh’s inclusion of fuzzy sets) of the relations whose projections are
proj [R (n

1
. . ., n

n
); X

i
] = R(n

i
).

Interactivity must be considered when extending a given function, in the
sense of 2.A. For instance, the nondistributivity of ( over % (2.B.d.β) can
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   noninteractive            interactive
Figure 1

be explained in terms of interactivity: while there is no problem in the
extension of the function z(x + y), the situation is different for the exten-
sion of zx + ty forgetting the constraint of interactivity z = t.

More generally, given a function from X
1
, × • • • × X

n
 to Y and a fuzzy

restriction R on the arguments of f, the extension principle becomes
f(A

1
, . . . , A

n
)

  
= X1× L ×Xn∫ min µ Ai

(x1), . . . , µ An (xn ), µR(x1, . . . , xn )( ) / f (x1, . . . , xn ).

(6)

where A
i
 is a fuzzy set on X

i
.

When R is an ordinary separable relation on Rn, the associated restric-
tion means ∀i = 1, n, ∃I

i
, x

i
 [ I

i
 where I

i
 is a union of disjoint intervals.

The constraint is implicitly satisfied as soon as m
A i

(x
i
) = 0, ∀x

i 
Ó I

i
. An

example of interactivity where R is an ordinary nonseparable relation on
R2 is given in the following paragraph.

Calculate the fuzzy restriction H of ax + by (a fuzzy set is a unary
relation) when x and y are restricted by fuzzy sets M and N, respectively,
and by the constraint x + y = 1, (a, b) [ R2:

µH (z) = sup
z = ax + by

x + y = 1

     min (µM (x),  µN (y));

hence,

µH (z) =  min µM

z− b

a− b




 , µN

a− z

a− b












if a ≠ b;

and if a = b,

µH (z) =
µM⊕N (1)       if   z = a,

0 otherwise.




However, the existence of a nonseparable restriction R does not always
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simplify the computation of f(A
1
, . . . , A

n
) as above, but can make it

totally unwieldy.
N.B.: Interactivity in the sense of this section was called β-interactivity

by Zadeh (1975b). Another kind of interactivity will be introduced in IV.2.

c. Extension Principle and Composition of n-ary Fuzzy
Relations

The extension principle can be written (see 2.A.a)

µB(y) = sup
x1, . . . , xn

y= f (x1, . . . , xn )

min(µ A1
(x1),  .  .  .  ,  µ An

(xn ))

where B = f(A
1
, . . . , A

n
). By denoting R = c(A

1
)> • • • > c(A

n
) =

A
1
 × • • • × A

n
 and letting S be the ordinary relation defined by

m
s
(x

1
 , . . . , x

n
, y) = 1 iff y = f(x

1
, . . . , x

n
), we have B = R ° S, and the

extension principle appears as a particular case of composition of
fuzzy relations. When a restriction T on (x

1
, . . . ,x

n
) is added,

B becomes B = (R > T) ° S.

Remark From a computational point of view it may be interesting to
solve the equation y = f(x

1
, . . . , x

n
) (or the corresponding system if

nonfuzzy restrictions on (x
1
, . . . ,x

n
) exist) and to introduce the calculated

x
i
 in m

Ai
. Once more the formula becomes a composition of fuzzy relations.

B.   BINARY FUZZY RELATIONS

Binary relations have received much attention in the literature because
the notion of a link between two elements belonging to the same universe
or two different universes is fundamental in systems theory. Some classical
definitions follow.

a. Definitions

Let R be a fuzzy relation on X × Y. The domain of R, denoted dom(R),
and the range of R, denoted ran(R), are respectively defined by

µdom(R) (x) = sup
y

  µR (x,  y)   ∀ x ∈X

and
µ ran(R) (y) = sup

x
  µR (x,  y)   ∀ y ∈Y.



Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

II.3.  Fuzzy Relations   73

The inverse of R, denoted R–1, is the fuzzy relation on Y × X defined
by m

R –1
(y, x) = m

R
(x, y)(Yeh,1973).

Yeh (1973) has extended to fuzzy relations definitions which are rather
specific of functions. R is:

e-determinate iff ;x [ X, ' at most one y [ Y, such that m
R
(x, y) > e;

e-productive iff ;x [ X, 'y, m
R
(x, y) > e;

An e-function iff R is both e-determinate and e-productive; a 1-function
is an ordinary function when restricted to its 1-cut;

e-onto iff ;y [ Y, 'x [ X, m
R
(x,y) > e;

e-injective iff R is an {-function and R–1 is e-determinate.
e-bijective iff R and R–1 are both e-functions.

In the following definitions X= Y. Now we give the fuzzy version of
well-known possible properties of relations in a universe X.

Three extensions of reflexivity have been proposed. R is:

reflexive iff ;x [ X, m
R
(x,x) = 1 (Zadeh, 1971);

e-reflexive iff ;x [ X, m
R
(x, x) >  e (Yeh, 1973);

weakly reflexive iff ;x [ X, ;y [ X, m
R
(x, x) > m

R
(x, y) (Yeh, 1973).

Symmetry is defined by: R is symmetric iff ;x [ X, ;y [ X, m
R
(x, y)

= m
R
(y, x).

b.    Composition of Binary Fuzzy Relations

a.    Properties

The composition of fuzzy relations has already been introduced in A.a.
In the particular case of binary relations the composition of R and S on
X × Y and Y × Z respectively can be written

  
µR oS x, y( ) = sup

y∈Y
  min µR x, y( ), µ y, z( )( ) ;x [ X, ;z [ Z. (7)

There are some properties that are common to binary relations. They
can be proven without difficulty. Let U be an extra relation on Z × W and
T on Y × Z. Then:

associativity: R ° (S ° U) = (R ° S) ° U;
distributivity over union: R ° (S < T) = (R ° S) < (R ° T);
weak distributivity over intersection: R ° (S > T) # (R ° S) n (R ° T);
monotonicity S # T implies R ° S # R ° T;
symmetrization: R ° R–1 is a weakly reflexive and symmetric relation

on X × X.
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A nonzero fuzzy relation Q on X is weakly reflexive and symmetric iff
there is a universe Y and a fuzzy relation R on X × Y such that Q = R °
R–1 (Yeh, 1973).

β.    Interpretations

(7) can be interpreted in the following way: m
R ° S

(x, z) is the strength of
a set of chains linking x to z. Each chain has the form x - y - z. The strength
of such a chain is that of the weakest link. The strength of the relation
between x and z is that of the strongest chain between x and z.

Let A be a fuzzy set in X: (7) can be rewritten

  
µ A o R y( ) =  sup

x
  min µ A x( ), µR x, y( )( ).

We say that B = A ° R is a fuzzy set induced from A through R. This
induction generalizes a well-known nonfuzzy rule: if x = a and y = f(x),
then y =f(a)—as shown in Fig. 2 (Zadeh, 1975b): We have B =
proj [c(A) > R; Y].

Figure 2

γ.    Representation of a Fuzzy Relation on Finite Universes

When the related universes X and Y are finite, a fuzzy relation R on
X × Y can be represented as a matrix [R] whose generic term [R]

ij
 is

m
R
(x

i
, y

j
) = r

ij
, i = 1,n, j = 1, m, where |X| = n and |Y| = m.

The composition of finite fuzzy relations can thus be viewed as a matrix
product. With [S]

jk
 = s

jk
, k = 1, p, p = | Z |,

  

R o S[ ] ik
= rijsjk

j
∑

where Σ is in fact the operation max and product the operation min.
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d.   Convergence of Powers of Fuzzy Relations on a Finite
Universe (Thomason, 1977)

Let R be a fuzzy relation on X × X where |X| = n. The mth power of a
fuzzy relation is defined as Rm = R ° Rm–1, m > 1, and R1 = R. The
following propositions hold:

the power of R either converges to idempotent Rc for a finite c or
oscillates with finite period (if Rm does not converge, then it must oscillate
with a finite period since |X| is finite and the composition is deterministic
and cannot introduce numbers not in R originally);

if ;i, j, 'k such that r
ij
 < min(r

ik
,r

kj
), then R converges to Rc where

c < n – 1. (See Thomason, 1977, for a proof.)

Other results in more particular cases can be found in Thomason (1977).

e.   Other Compositions

Since R ° S can be written proj[c(R) > c(S); X × Z] where R and S
are respectively on X × Y and Y × Z, other compositions may be intro-
duced by modifying the operator used for the intersection.

Changing min to * , we define R *  S through

µR ∗[ ]S x,z( ) = sup
y

 µR (x,y)∗µS(y,z)( ).
Zadeh (1971) proved that when *  is associative, and nondecreasing with
respect to each of its arguments, the sup– *  composition satisfies associa-
tivity, distributivity over union, and monotonicity.

Examples of such operations are product and bold intersection (1.B.e,
formula (12)).

We may encounter another kind of alternative compositions, inf-max

composition. The following property holds:   RoS = R* Swhere * de-
notes inf-max composition.

c    Transitivities

α.    Max-Min Transitivity

The idea behind transitivity is that the shorter the chain, the stronger the
relation. In particular, the strength of the link between two elements must
be greater than or equal to the strength of any indirect chain (i.e., involving
other elements).

Let R be a fuzzy relation on X × X, R is max-min transitive iff
R ° R # R, or more explicitly (Zadeh, 1971)

;(x, y, z) [ X3,   m
R
(x, z) >   min(m

R
(x, y), m

R
(y, z)).

h



Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

II.3.  Fuzzy Relations   76

Write Rm = R ° Rm–1 with m > 1 and R1 = R. If R is transitive,

Rm # R, m > 1; hence R = R̂ where R̂  is the transitive closure of R,

defined as ̂R = R < R2 < • • • < Rm <• • •.

Generally, when R is not transitive but reflexive, ̂R still exists because
the sequence m

Rm(x, y) is increasing with m and bounded by 1 (Tamura et
al.,1971).

Proof:

µ
Rm x, y( ) = sup

x1,x2 , . . . , xm−1
min µR x,  x1( ), µR x1,  x2( ), . . . , µR xm−1, y( )( ).

Hence

µ
Rm x, y( )> sup

x1, . . . , xm−2
min µR x, x1( ), . . . , µR xm−2 , y( ), µR y, y( )( ).

Because R is reflexive, the left-hand side of the inequality is equal to
m

Rm–1(x, y).   Q.E.D.
It is easy to show that (Tamura et al., 1971)

;(x, y, z) [  X3, m
Rm+n (x, z) > min( m

Rm (x, y), m
Rn (y, z)).

When m → + ̀  and n → + ̀ , we obtain

µ
R̂

x,  z( ) > min µ
R̂

x,  y( ), µ
R̂

y,  z( )( ).
So the transitive closure R̂ of R is max–min transitive.

When X is finite and |X| = n, 'k < n, Rk = R̂ because chains involving
more than n elements must necessarily have cycles that do not alter the
strength of the chains.

N.B.: Note that if R models short-range interactions between elements,
its transitive closure models long-range interaction.

b.    Other Transitivities

Other transitivities, associated with other kinds of composition of fuzzy
relations, can be defined. Generally, R is said to be max-*  transitive iff
R* R # R.

Zadeh (1971) considered max-product transitivity. Bezdek and Harris
(1978) introduced several other transitivities; max. *  where a * b is given
by:

(1) a< b = max(0,a + b – 1) (bold intersection);

(2) a h b = 1
2

(a + b) (arithmetic mean);

(3) a ~ b = max(a, b) (union);

(4) a +̂ b  = a + b – ab (probabilistic sum).

h
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The appealing features of some of these transitivities will be discussed
later.

C. SIMILARITY RELATIONS AND RELATED TOPICS

a. Definitions

“The concept of similarity relation is essentially a generalization of the
concept of an equivalence relation,’ (Zadeh, 1971). More specifically, a
similarity relation is a fuzzy relation in a universe X, denoted S, which is
reflexive, symmetrical, and max–min transitive.

The complement of S, say D = S , is called a dissimilarity relation
(m

D
(x, y) = 1 – m

S
(x, y)). D is antireflexive (i.e., m

D
(x, x) = 0, ;x [ X),

symmetrical, and min–max transitive (i.e., m
D
(x, z) < max(m

D
(x, y),

m
D
(y, z)) ;(x, y, z) [ X3).
m

D
(x, y) can be interpreted as a distance function, which is an ultramet-

ric owing to the above inequality.
Let Sα be the α-cut of the similarity relation S. Zadeh (1971) proved the

following proposition. If S is a similarity relation in X, then ;α []0, 1],
each Sα is an equivalence relation in X. Conversely, if the Sα, 0 < α < 1,
are a nested sequence of distinct equivalence relations in X, with α

1
> α

2

iff Sα 1
, Sα2

, S
1
 nonempty, and dom(Sα ) = S

1
 ;α, then for any choice of

α’s in ]0, 1] which includes α = 1, S = <α αSα is a similarity relation in X
(Zadeh, 1971)

µs x,  y( ) = sup 
α

min α ,  µsα x,  y( )( ) = sup 
α

αµSα x,  y( )( ).
N.B.: If S

~α is a fuzzy α-cut of a max–min transitive fuzzy relation S,
then S

~α is also max–min transitive (Zadeh, Reference from IV.6, 1976).

b.   Partition Tree (Zadeh, 1971)

Let IIα denote the partition induced on X by Sα (α-cut of a similarity
relation S). Clearly, Pα

'
 is a refinement of Pα if α. A nested sequence

of partitions Pα1
, Pα 2

, . . . , Pαk
 may be represented diagrammatically in

the form of a partition tree, as shown in Fig. 3. (The example is from
Zadeh, 1971).

The concept of a partition tree plays the same role with respect to a
similarity relation as the concept of a quotient does with respect to an
equivalence relation.
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Figure 3

N.B.: A similarity relation can be interpreted in terms of fuzzy similar-
ity classes S(x

j
), one per element of the universe: m

S(xi )
= m

S
(x

i
, x

j
), the

grade of membership of x
i
 in the fuzzy class S(x

j
).

c. Weaker Similarity Relations

Several authors (Zadeh, 1971; Bezdek and Harris, 1978) pointed out that
max–min transitivity was too strong a property to impose on a fuzzy
relation. For instance (Zadeh, 1971), suppose that X is a closed real
interval [a, b], and we want to model a proximity relation between ele-
ments of [a, b] using a similarity relation S. A reasonable assumption is
that m

S
(x, y) is continuous at x = y; then using max–min transitivity we

can prove m
S
(x, y) = 1 ;(x, y) [ [a, b]2. The paradox may be resolved by

making S only max-product transitive (for example, m
S
(x, y) = e–k2|x – y|)

or max–< transitive (for instance, m
S
(x, y) = 1 – (|x – y| / |b – a|)).

Let us compare the strength of the above introduced transitivities.
Denoting by 5∗ the set of reflexive, symmetrical, max–* transitive fuzzy
relations and by 5 the set of nonfuzzy equivalence relations, Bezdek and
Harris (1978) showed that, since

;(a, b) [ [0, 1]2,
max(0,a + b – 1) < ab < min(a, b) < 1

2
(a + b) < max(a, b) < a + b – ab,

then,

5 # 5 +̂ # 5~ # 5
h
#5

min
#5. # 5

<
         (8)
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k

k

k

We see that the max–< and the max-product transitivities are the weakest
ones and hence intuitively the most appealing. Transitivity max–min is too
rigid; max–arithmetic mean, max–max, and max–probabilistic sum are a
fortiori such.

A reflexive, symmetrical, max–< transitive fuzzy relation is called a
likeness relation (Ruspini, Reference from IV.6, 1977).

If S is a likeness relation, then 1 –m
S
 is a pseudometric. Conversely, if d

is a pseudometric valued in [0, 1], then 1 –d is a characteristic function of
a likeness relation (max–< transitivity is equivalent to the triangle inequal-
i ty: m

S
(x, z) > max(0,m

S
(x, y) + m

S
(y, z) – 1) is equivalent tod(x, z)

< min(1,d(x, y) + d(y, z)) < d(x, y) + d(y, z)).

d.    Proximity Relation

A proximity relation (also called a tolerance relation) is a reflexive,
symmetrical fuzzy relation.

To get a similarity relation from a proximity relation P, we must build
the transitive closure ̂P of the latter. Let Pα be the α-cut of P and (Pα) the
transitive closure of the α-cut. Tamura et al. (1971) have shown that
generally (Pα) refines (P̂)α, that is, ;(x, y) [ X2, if x(Pα) y, then x ( P̂)α y.
However, when X is finite, (Pα) = ( P̂)α.

Some algorithms have been proposed to accelerate the computation of P̂
when X is finite. Kandel and Yelowitz (1974) used a method much related
to the Floyd (NF 1962) algorithm for shortest paths in a graph. Dunn
(1974) noticed that a finite fuzzy proximity relation could be interpreted as
a nonfuzzy capacitive graph where m

P
(x, y) is the capacity of the link x-y.

The transitive closure of the relation is nothing but the maximal spanning
tree of the capacitive graph. Hence, Prim’s (NF 1957) algorithm can be
used for computing ̂P. This algorithm is very fast.

e.    Convex Hull of Equivalence Relations

Let conv(5) denote the convex hull of the nonfuzzy equivalence rela-
tions in X (finite). conv(5) is made of all the convex combinations of
elements of 5. Bezdek and Harris (1978) very recently exhibited a relation-
ship between conv(5) and max–< transitivity: conv(5) , 5

<
 for |X|

> 3.

The convex decomposition i∑ ciRi , where R
i
 [ 5  and i∑ ci = 1, of an

element in conv(5) provides an alternative to the partition tree decomposi-
tion. Each R

i
 is equivalent to a nonfuzzy partition of X, and C

i
 expresses

the “percentage” of R
i
 needed to build the fuzzy relation i∑ ciRi . Note that

the partitions so generated are not nested hierarchically. Unfortunately,

k
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given a likeness relation S, there is as yet no efficient algorithm for
deciding whether S belongs to conv(5) or not and a fortiori for computing
the c

i
 when they exist.

f.    A Connection between Fuzzy Partitions and Likeness
Relations

Given a fuzzy partition, it is possible to induce a likeness relation. Let
A

1
, . . . , A

P
 be a fuzzy partition of X (1.B.e). An associated likeness

relation is defined by (Bezdek and Harris, 1978).

µs x, y( ) = min
i=1

p

∑ µ Ai x( ), µ Ai y( )( ).

Note that 1 –m
S
 is a pseudometric because

µs x, y( ) = 1− 1
2

µ Ai x( ) − µ Ai y( )
i=1

p

∑
owing to min(a, b) = 1

2
(a + b – |a – b|)

The converse transformation is unfortunately generally not possible.

g.   Comments

The most patent conclusion of this section is that a similarity relation is
a very restricted notion because it is equivalent to an ultrametric. A
likeness relation seems more promising, although it is equivalent to a
well-known nonfuzzy concept, a pseudometric. However, the concept of a
fuzzy relation renews the semantics of pseudometrics, possibly adapting
them to situations in which the classes involved do not have sharply
defined boundaries.

D.   FUZZY ORDERINGS

As equivalences can be generalized into similarities and likenesses,
classical orderings can also be fuzzified. In this section we consider
reflexive and max–min transitive fuzzy relations.

a. Antisymmetries

For binary classical relations R, antisymmetry is defined by ;(x, y)
[ X2, if x R y and y R x, then x = y, which is equivalent to
;(x, y) [ X2, if    x ≠ y, then m

R
(x, y) = 0 or        m

R
(y, z) = 0.
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Two definitions of antisymmetry can be found in the literature. They
coincide with the above definition for nonfuzzy relations:

Perfect antisymmetry (Zadeh, 1971): a fuzzy relation R is perfectly
antisymmetric iff

;(x, y) [ X2, if    x ≠ y, and    m
R
(x, y) > 0, then     m

R
(y, x) = 0;

Antisymmetry (Kaufmann, 1975): a fuzzy relation R is antisymmetric
iff

;(x, y) [ X2,      if    x ≠ y,    either    m
R
(x, y) ≠ m

R
(y, x)

                                                or     m
R
(x, y) = m

R
(y, x) = 0.

Note that perfect antisymmetry implies antisymmetry.

b.   Fuzzy Partial Orderings (Zadeh, 1971)

A fuzzy relation P in X is a fuzzy partial ordering iff it is reflexive,
max–min transitive, and perfectly antisymmetric.

When X is finite, it is possible to represent P as a triangular matrix or a
Hasse diagram. A fuzzy Hasse diagram is a valued, oriented graph whose
nodes are the elements of X. The link x → y exists iff m

p
(x, y) > 0. Each

link is valued by m
p
(x, y). Owing to perfect antisymmetry and transitivity,

the graph has no cycle. An example (Zadeh, 1971) is provided in Fig. 4,
where

µ p =

1 0.8 0.2 0.6 0.6 0.4

0 1 0 0 0.6 0

0 0 1 0 0.5 0

0 0 0 1 0.6 0.4

0 0 0 0 1 0

0 0 0 0 0 1

























Figure 4

With each x [ X, we associate two fuzzy sets: the dominating class
denoted by P

>
(x) and defined by mp>(x)(y) = m

p
(y, x) and the dominated
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class denoted by P
<
(x) and defined by mp<(x)(y) = mp(x, y). And x is said

to be undominated iff P
>
(x) = Ø, i.e., ;y, mp(y, x) = 0; x is said to be

undominating iff P
<
(x) = Ø, i.e., ;y, mp(x, y) = 0. It is evident that the

sets of undominated and undominating elements of any fuzzy partial
ordering are nonempty when X is a finite set {x

1
, . . . , x

n
}. Assume that X

is ordered in such a way that ;i, ;j if mp(xi
, x

j
) > 0, then i < j, i.e., the

corresponding matrix is triangular. It is obvious that x
1
 is undominated

and x
n
 undominating.

A related concept is that of a fuzzy upper bound of a nonfuzzy subset of
X. Specifically, let A be a nonfuzzy subset of X. The fuzzy upper bound of
A, denoted U(A), is a fuzzy set defined by (Zadeh, 1971)

  
U A( ) = I

x ∈A
P

>
(x).

For a nonfuzzy partial ordering, this reduces to the conventional definition
of an upper bound.

N.B.: An α-cut of a fuzzy partial ordering in X is a nonfuzzy partial
ordering. The converse also holds in the same sense as for similarity (see
C.a, see Zadeh, 1971).

c.    Linear Ordering

A fuzzy linear ordering L is a fuzzy partial ordering such that ;x, ;y if
x ≠ y, either m

L
(x, y) > 0 or m

L
(y, x) > 0.

Any α-cut of a fuzzy linear ordering is a nonfuzzy linear ordering.
Spilrajn’s theorem: Let P be a fuzzy partial ordering in X. Then there

exists a fuzzy linear ordering L in a set Y of the same finite cardinality as
X and a one-to-one mapping a from X onto Y such that if mp(x, y) > 0,
then m

L
(σ(x), σ(y)) = mp(x, y).

Zadeh (1971) gives a proof of this “fuzzy extension," of a very well-
known result. Informally, this theorem states that any fuzzy partial order-
ing can be mapped onto a fuzzy linear ordering that is consistent with it.
The construction of L may be visualized as a projection of the Hasse
diagram of P on an “inclined” line. See Fig. 5 (Zadeh, 1971). Specifically σ
is such that ;x

i
, ;x

j
, x

i
 ≠ x

j
,

µ L σ xi( ),σ xj( )( ) =

µP (xi , x j )   if   µP (xi , x j ) > 0,

0                if   µP (xi , x j ) = 0 and µP (xj , xi ) > 0,

∈               if   µP (xi , x j ) = µP (xj , xi ) = 0 and i < j,  

0                if   µP (xi , x j ) = µP (xj , xi ) = 0 and j < i,











where P is triangular, σ(x
i
) = y

i
 [ Y, and { is any positive constant that is
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smaller than or equal to the smallest positive entry in the matrix P.
Generally, σ and L are not unique.

Figure 5

d.    Fuzzy Preorder

A fuzzy preorder is a reflexive and transitive fuzzy relation that is not
assumed to be perfectly antisymmetric.

Let P be a fuzzy preorder. If there exists an ordinary subset A of X such
that

;(x, y) [ A2, m
p
(x, y) = m

p
(y, x) ≠ 0,

the restriction of P in A is a similarity called a similarity subrelation of P.
A similarity subrelation is maximal iff A is maximal. A maximal A is called
a similarity class of the preorder P. Each x in X belongs to a similarity
class, at least {x}. Hence, the set of similarity classes of P is a cover of X.
A fuzzy preorder is said to be reducible (Kaufmann, 1975) iff the set of
similarity classes is a partition of X.

N.B.:    A nonfuzzy preorder is always reducible.
When P is reducible, elements in the same similarity class need not be

distinguished and we get a fuzzy preorder between similarity classes.
Whether the preorder is reducible or not, Orlovsky (1978) proved the

following proposition: any fuzzy preorder P on a finite or compact
universe X has undominated elements, i.e.,

' x [ X,   ;y [ X,   m
p
(x, y) > m

p
(y, x).
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Let P* be the antisymmetrized P, i.e.,
m

P*
(x, y) = max(0, m

P
(x, y) – m

P
(y, x)).

P* is a fuzzy partial order. Obviously, the undominated elements of P* are
the same as those of P. When X is finite, it is thus easy to find the
undominated (undominating) elements of P.

e.    Comment

Orlovsky’s result—the existence of undominated elements for any fuzzy
preorder on a compact set—is very important from a philosophical point
of view. The assumption of max–min transitivity, which some authors
considered as unnatural in a fuzzy situation, is equivalent to the existence
of nonfuzzy preferred elements in the sense of the preorder, which looks
paradoxical in such a fuzzy situation. The main contribution of the notion
of fuzzy preorder is to propose grades of preference, without blurring the
choice itself.

E.    EQUATIONS OF FUZZY RELATIONS

As in the three previous sections, we consider here only binary relations
and study the equation

Q ° R=  S         (9)

where Q is a fuzzy relation on X × Y, R a fuzzy relation on Y × Z, and S
a fuzzy relation on X × Z.

Knowing Q and R in (9), it is easy to find S. The converse problem, i.e.,
find Q (resp. R) knowing S and R (resp. Q), is as interesting but may seem
more difficult. Most of the published works concerning this problem were
authored by E. Sanchez.

a.    The General Problem (Sanchez, 1976)

The involved fuzzy relations are supposed to be valued only on a
Brouwerian lattice L (1.G.a). Recall the operation α on L defined by
a α b = sup{x [ L, inf(a, x) < b}, ;(a, b) [ L2. The following properties
obviously hold:

;(a, b, c) [ L3,     aα (sup(b, c)) > a α b     (or aα c)     (10)

                       ;(a, b) [ L2,     a α (inf(a, b)) > b. (11)
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Sanchez introduced the operator a to compose fuzzy relations:

µQ aR(x, z) = inf
y

(µQ (x, y)α µR(y, z)).

The following propositions give the main properties of α :
for every pair of fuzzy relations Q on X × Y and R on Y × Z, we have

R # Q–1 a (Q ° R)        (12)

and

Q # (Ra(Q ° R)–1)–1;        (13)

for every pair of fuzzy relations Q on X × Y and S on X × Z, we have

Q ° (Q–1 a S) # S        (14)

and

(R a S–1)
–1

 ° R # S.        (15)

Proof:    Let U = Q–1 a (Q ° R).

µU (y, z) = inf
x ∈X

µ
Q−1 (y, x)α sup

t ∈y
inf(µQ (x,t)µR(t, z))











or

µU (y, z) = inf
x ∈X

µQ (x, y)α sup[[ inf(µQ{ (x, y), µR(y, z)),

                                          sup
t≠y

inf(µQ (x,t)µR(t, z))}]];

hence, using (10),

µU (y, z)> inf
x ∈X

µQ (x, y)α inf([ µQ (x, y), µR(y, z))];
hence, using (11),

m
U
(y, z) > m

R
(y, z),  Q. E. D.

The other inclusions are proved in the same fashion (Sanchez, 1976).
We can now state two fundamental results that give the greatest solu-

tions of (9) (Sanchez, 1976).

(1). Let Q be a fuzzy relation on X × Y, S a fuzzy relation on X × Z,
and 5 the set of fuzzy relations R on Y × Z such that Q ° R = S. Then,
either 5 = Ø or Q–1 a S [ 5. If 5 ≠ Ø, Q–1 a S is the greatest element
in 5.
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(2). Let R be a fuzzy relation on Y × Z and S a fuzzy relation on
X × Z, and 4 the set of fuzzy relations on X × Y such that Q ° R = S,
then either 4 = Ø or (R α S–1)–1 [ 4. If 4 ≠ \, (R α S–1)–1 is the
greatest element in 4.

Proof: We prove only the first proposition. Assume 5 ≠ Ø and R [ 5.
From (12) we have R # Q–1 α S. Hence, S= Q ° R # Q ° (Q–1 α S)
(see B.b.α). But from (14) Q ° (Q–1 α S) # S, hence Q ° (Q–1 α S) = S,
i.e., Q–1 α S [ 5.    Q.E.D.

When the Brouwerian lattice L is just [0, 1], recall that a α b = 1 iff a < b
and a α b = b iff a > b: so the greatest solutions in (9) can be easily
computed.

N.B.: 1. Inf–max fuzzy relations equations (Q * R = S) can be
solved on a dually Brouwerian lattice (1.6.a). The operator e such that
;(a, b) [ L2, a e b = inf{ x [ L, sup(a, x) > b} replaces α. The associated
e -composition is defined by

m
Q e R

(x, z) = sup
y ∈ Y

(µQ (x, y)e µR(y, z)).

Then Q–1 e S((R e S–1)–1 resp.) are the least R (Q resp.) such that
Q * R = S when solutions exists.

2. The above results are still valid when we relax (9) into Q ° R # S
(Sanchez, 1977a), but now the inequality obviously always has solutions.

b. Particular Case 1 (Sanchez, 1977a)

We consider the following problem: find R such that A ° R = B where
A is a fuzzy set on X, B a fuzzy set on Y, and R an unknown fuzzy relation
in X × Y, valued in [0, 1]. X and Y are assumed to be finite.

Sanchez defines the operator s in [0, 1] such that a s b = 0 iff a < b,
a s b = b iff a > b. It is easy to check that a s b < min(a,b).

Let A and B be two fuzzy sets on X and Y, respectively. The fuzzy
relation A s B in X × Y has membership function

m
A s B

 (x, y) = m
A
 (x) s m

B
 (y).

Let 5 = {R, A ° R = B}; if 5 ≠ \, then A s B [ 5.

Proof:

  
µ A o (A σ B) (y) = sup

x ∈X
min(µ A(x)σ µB(y))

               = sup
x

(µ A(x)σ µB(y)).



Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

II.3.  Fuzzy Relations   87

Hence,

m
A ° (A  s B)

 =    sup
x

µ A(x)≥ µB(y)

µB(y) = µB(y)

because if 5 ≠ \, ;y, 'x, m
A
(x) > m

B
(y) (obvious since m

B
(y) =

sup
x
 min( m

A
(x), m

R
(x, y)). Q.E.D.

Moreover, Sanchez (1977a) showed the following results:

5 has a least element iff ;y, ('!x, m
A
(x) > m

B
(y) or m

B
(y) = 0); when it

exists, it is A s B;
if  5 ≠ \, ;R such that A s B # R # A α B, then A ° R = B.

Note that owing to the result of the general case A α B is the greatest
element in 5 ≠ \.

c.   Particular Case 2

Now we turn to the following problem: find A such that A ° R = B
where A is an unknown fuzzy set on X (finite), B a fuzzy set on Y (finite),
and R a fuzzy relation in X × Y.

We have m
B
(y) = sup

x
 min(m

A
(x), m

R
(x, y)). Note first that the problem

has no solution as soon as 'y, ;x, m
R
(x, y) < m

B
(y).

The following proposition characterizes the solution m
A
 when it exists: A

is a solution iff:

(1). ;y, ('x, m
A
(x) > m

R
(x, y) = m

B
(y))

or ('x, m
A
(x) = m

B
(y) < m

R
(x, y));

(2). ;x;y, m
A
(x) < m

B
(y) if m

R
(x, y) > m

B
(y).

Proof:     Let K(y) = {x [ X, m
B
(y) = min(m

A
(x), m

R
(x, y)}.

(i) ;x, min(m
A
(x), m

R
(x, y)) < m

B
(y) since A is a solution. Hence,

if m
R
(x, y) > m

B
(y), then (m

A
(x) < m

B
(y). This proves 2. Moreover,

;x [ K(y) ≠ \ (since A is a solution)

if m
R
(x, y) = m

B
(y), then m

A
(x) > m

B
(y);

if m
R
(x, y) > m

B
(y), then m

A
(x) =  m

B
(y).

(ii)  y is supposed fixed. Assume A satisfies 1 and 2. It is a solution
because

   µB(y) = max sup
x

µR(x,y)=µB(y)

min






(µB(y), µ A(x))

 sup
x

µR(x,y)>µB(y)

min(µR(x, y),µ A(x))





. Q.E.D.
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For each y, the feasible domain of m
A
(x) (such that A is a solution) is

defined by the following:

Let

X0 (y) = {x, m
R
(x, y) = m

B
(y)}

and

X+ (y) = {x, m
R
(x, y) > m

B
(y)}.

(a)    For x [ X —(y) = {x, m
R
(x, y) < m

B
(y)}: m

A
(x) is unconstrained.

(b)    ;x [ X+ (y),   m
A
(x) [ [0, m

B
(y)].

(c)    'x [ X0(y),   m
A
(x) [ [m

B
(y), 1] or 'x [ X+ (y), m

A
(x) = m

B
(y).

For a given y, let p(y) = |X0(y)| and q(y) = |X+ (y)|. Let Ik(y) be an
n-tuple of intervals Ik(x, y) (n = |X|) satisfying the above three require-
ments. When X—(y) ≠ X, we have: if (;x [ X, m

A
(x)[ Ik(x, y)), then

m
B
(y) = max

x[ X
 min(m

A
(x), m

R
(x, y))

Generally, several Ik(y) exist.
When X0(y) = Ø, the number of Ik(y) is q(y) (k = 1,q(y)). They are

obtained by forcing (m
A
(x(k)) = m

B
(y) for an arbitrarily chosen x(k)

[ X+ (y) and setting Ik(x(k), y) = m
B
(y), Ik(x, y) = [0, m

B
(y)], ;x

[   X+ (y) – {x(k)} and Ik(x, y) = [0, 1] for x [ X — (y).
When X0(y) ≠ Ø, the number of Ik(y) is p(y) + q(y). The first q(y)

ones are obtained as above with I k(x, y) = [0, 1] for x [ X0(y). For
k > q(y), Ik(y) is defined by Ik(x(k), y) = [0, m

B
(y), 1] for an arbitrarily

chosen x(k) [ X0(y), Ik(x, y) = [0, 1] for x [ X0(y) – {x(k)}, Ik(x, y)
= [0, 1], for x [ X—(y), Ik(x, y) = [0, m

B
(y)] for x [ X+ (y).

A possible set of admissible intervals {wi(x), x [ X} for m
A
(x) such that

B = A ° R is obtained as follows. For each y [ Y, choose one of the Ik(y)
(k is not necessarily the same for ally), denoted I

i
(y) If the I

i
(y) are such

that ;x, >
y [ Y 

I
i
(x, y) ≠ Ø, then

  
∀ x ∈X, ϕi (x) = I

y∈Y
Ii (x, y) = µΦ i (x).

Note that F
i
 is a F - fuzzy set (see 1.G.d, 2.C.b). Usually several F

i
 can be

built. Moreover, the greatest feasible solution can be found at once when it
exists, namely R–1 α B (m

R–1 α B
(x) = inf

y
(m

R
(y, x) α m

B
(y)) owing to the

result of the general case. Thus, the wi(x) are of the form [α
i
(x), β(x)]

; x [ X, where β(x) does not depend on i. However, several incomparable
least solutions #

x
α

i
(x) / x may exist.
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Example
|X| = |Y| = 4; X = {x

1
, x

2
, x

3
, x

4
}; Y= {y

1
, y

2
, y

3
, y

4
};

R =

1 0.1 0.9 0.2

0.2 1 0.4 1

0.1 0.4 0.3 0.5

0.1 0.2 0.9 0.8



















B = 0.9 0.5 0.5 0.8[ ];

X — (y
1
) = {x

2
, x

4
}; X0(y

1
) = {x

3
}; X+(y

1
) = {x

1
};

X— (y
2
) = {x

1
, x

3
}; X0(y

2
) = Ø; X+ (y

2
) = {x

2
, x

4
};

X—(y
3
) = {x

1
, x

2
, x

3
}; X0(y

3
) = {x

4
}; X+ (y

3
) = Ø;

X — (y
4
) = {x

1
, x

2
}; X0(y

4
) = {x

4
}; X+(y

4
) = {x

3
}.

The possible choices are

I1(y
1
) = (0.9, [0, 1], [0, 1], [0, 1]);           I2(y

1
) = ([0,0.9], [0, 1], [0.9, 1], [0, 1]);

I1(y
2
) = ([0, 1],  0.5, [0, 1], [0,0.5]);           I2(y

2
) = ([0, 1], [0,0.5], [0, 1],  0.5);

I1(y
3
) = ([0, 1], [0, 1], [0, 1], [0.5, 1]);

I1(y
4
)=([0,1], [0,1], 0.8,[0,1]);           I2(y

4
) = ([0,1], [0,1], [0, 0.8], [0.8, 1]).

I2(y
1
) is consistent with neither I1(y

4
) nor I2(y

4
), and I2(y

4
) is consis-

tent with neither I1(y
2
) nor I2(y

2
). Both can be rejected.

Hence there are two possible solutions

m
A1

 =  I1(y
1
) > I1(y

2
) > I1(y

3
) > I1(y

4
) = (0.9, 0.5, 0.8, 0.5),

m
A2

 [ I1(y
1
) > I2(y

2
) > I1(y

3
) > I1(y

4
) = (0.9, [0, 0.5] 0.8, 0.5).

Note that A
1
 = R–1 a B. Knowledge of the greatest solution can accel-

erate the a priori cancellation of some I k(y). The final range of the

possible values of m
A
 is m

A
(x

1
) = 0.9; m

A
(x

2
) [ [0,0.5]; m

A
(x

3
) = 0.8; m

A
(x

4
)

= 0.5.

An algorithm for the determination of the possible values of m
A
 can be

found in Tsukamoto and Terano (1977). Their approach is very similar to
the one outlined here. Tashiro (1977) extended Tsukamoto and Terano’s
method to the case when B and R are interval-valued. This extension is

possible because of the following remark. Write m
B
(y

j
) = [b

j

–, b
j

+], m
R
(x

i
,

y
i
) = [r

ij
–. , r

ij
+], and m

A
(x

i
) = [a

i
–, a

i
+], then

m
B
(y

j
) = max min ([a

i
–, a

i
+],[r

ij
–, r

ij
+]),

i

m
B
(y

j
) = max ([min(a

i
–, r

ij
–), min(a

i
+, r

ij
+)]).

i



Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

II.3.  Fuzzy Relations   90

Hence [b
j
–, b

j
+] = [max

i 
min(a

j
–, r

ij
–), max

i 
min(a

i
+, r

ij
+)]. We see that the

F-fuzzy equation is equivalent to two ordinary fuzzy ones.

d.    Eigen Fuzzy Sets (Sanchez, 1977b, 1978)

An eigen fuzzy set A of a fuzzy relation R in X × X is a fuzzy set on X
such that A ° R = A. Sanchez has proved the following results which
characterize the greatest eigen fuzzy set of R:

(a) Let A
0
 be the fuzzy set such that

∀ x, µ A0 (x) =  inf
′x ∈X

sup
x ∈X

µR(x, ′x ).

This constant fuzzy set is an eigen fuzzy set of R.
(b) Let A

1
 be the fuzzy set such that

∀ x, µ A1(x) =  sup
′x ∈X

µR( ′x , x).

The sequence (A
m
) defined by A

m
= A

m–1 ° R, m > 2, is decreasing and
bounded by A

0
 and A

1
:

A
0
 # • • • # A

m+ 1
 # A

m
 # • • • # A

2
 # A

1
.

(c) 'k < |X| such that A
k
 = A

k+m
, m > 0, and A

k
 is the greatest eigen

fuzzy set of R and also of the transitive closure R.
In Sanchez (1978) some algorithms for the determination of A

k
 are

provided.

e.    Comment

Let us quote Sanchez (1977a): “The composition of a fuzzy relation R
with a fuzzy set A corresponds to the concept of a conditioned fuzzy set
and can be interpreted in terms of a fuzzy metaimplication: if A then B by
R.” See [III.1.E]. “One can infer diagnosis and prognosis from observed
symptoms by means of a specific knowledge.,, The determination of R in
A ° R= B models the acquisition of knowledge from experiments, the
determination of A in A ° R= B models the search of a fuzzy cause (see
IV.7).

F.    GENERALIZED FUZZY RELATIONS

Until now we have focused our attention upon fuzzy relations in the
sense of fuzzy sets on a Cartesian product of universes, which express a
relationship between elements. Obviously other kinds of relations may
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involve fuzziness. In this section we give only some definitions and
suggestions for the setting of several generalized fuzzy relations.

a.   Nonfuzzy relation between Fuzzy Sets

Zadeh (Reference from IV.2, 1976) introduced tableaus of fuzzy sets
whose columns refer to the universes and rows contain (n + 1)-tuples of
labels of fuzzy sets. The (n + 1)th fuzzy set is considered as the image of
the n others through a nonfuzzy mapping. In fact, the tableaus play a basic
role in the description and the execution of fuzzy algorithms.

b.   Interval-valued Fuzzy Relations

Ponsard (1977) has extended some results of sections C and D to
interval-valued binary fuzzy relations using the operators W and M (see
2.C.b). The reflexivity of a F-fuzzy relation R

F
 in X2 is defined by

;x [ X m
RF

 (x, x) = [1, 1] = 1.

The transitivity of R is defined by

;(x, y, z) [ X3, m
RF

(x, z) > (m
RF

(x, y) M m
RF

(y, z))

(> in the sense of 2.C.b). The symmetry of R
F
 is defined by

;(x, y) [ X2, m
RF

(x, y) = m
RF

(y, x).

Using these definitions, Ponsard (1977) develops F-fuzzy preorders and
F-fuzzy similarities.

c.   Fuzzy-Valued Fuzzy Relations

A fuzzy-valued fuzzy relation in X × Y is a type 2 fuzzy set on X × Y.
The composition of such relations Q in X × Y and R in X × Z can be

performed using max  and min:
m

Q ° R
(x, z) = max  min m

Q
(x, y), m

R
(y, z)).

y

This definition holds for Y finite. Note that the max –min composition of
interval-valued fuzzy relations (a particular case of fuzzy-valued fuzzy
relations) is different from the W–M Ponsard composition (see b above).
A direct extension of definitions of properties specific to fuzzy relations to
fuzzy-valued fuzzy relations may appear too strict; for instance symmetry
would mean

;(x, y),    m
R
(x, y) = m

R
(y, x)     in   ~3[0, 1];
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weaker symmetry could be stated using approximate equality in the sense
of 1.E.c.

d.   Fuzzy Relation between (Non)Fuzzy Sets

C. L. Chang (Reference from III.3) has proposed a way of inducing a
fuzzy relation ~R in ~3(X) × ~3(Y) from a fuzzy relation R in X × Y:
;(A, B) [ ~3(X) × ~3(Y), m

~R
(A, B) = sup min(m

A
(x), m

B
(y), m

R
(x, y)).

 x, y

m
~R
(A, B) is nothing but the degree of consistency of A ° R and B (or A

and B ° R–1): hgt ((A ° R) > B). Note that one must not confuse ~R and
the extension of m

R
, a mapping from X × Y to [0, 1], by means of the

extension principle. The latter would be a fuzzy-valued fuzzy relation
between fuzzy sets.

Sanchez (1977c) has studied ~R for A and B ordinary sets. He defines two
kinds of inverses for ~R:

a lower inverse ~R* , characterized by m
~R*

(B, A) = sup
c # B

 m
~R
(A, C);

an upper inverse ~R* , characterized by m
~R
*(B, A) = sup

c, c >B ≠ \
 m

~R
(A, C).

For an extensive treatment of these inverse relations, see Sanchez (1977c).

e.   Tolerance Classes of Fuzzy Sets

In order to deal with the fact that membership functions are always
partially out of reach, higher order fuzzy sets were defined (type 2 fuzzy
sets 1.G.d, 2.C.b, probabilistic sets 1.G.e, level 2 fuzzy sets 2.C.a), an
alternative approach can be to use a proximity relation in ~3(X) X ~3(X) to
sketch “fuzzy tolerance classes” for the admissible membership functions
of a given ill-known fuzzy set. Denote this proximity relation by. For
the sake of the consistency, | must be compatible with most of the
operations *  on ~3(X). Specifically, if A | A′ and B | B′, then (A* B)
|(A ′* B ′), where *  may be >, >, . . . or even %, . . . and A, A′,B, B′
are ordinary fuzzy sets.

This is interpreted as “if A looks like A′ and B like B′, then A *  B must
look like A′ *  B′.” There are several possible choices for |.

The consistency condition can be expressed as follows. There exists an
increasing (in the sense of 2.B) operation ' in [0, 1] such that

m
|
(A *  B, A′* B′) > m

|
(A, A′) ' m

|
(B, B′).

For instance, Nowakowska (Reference from IV.I) showed that the above
condition holds for | = S

4
 (see 1.E.c.β), * = > or * = <, and ' = min.
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Chapter  4
FUZZY FUNCTIONS

Under the name fuzzy functions are gathered various kinds of mappings
between sets generalizing ordinary mappings in some sense. They are
described in the first section of this chapter and interpreted. Strangely
enough, most of them have received little attention in the literature, except
from specific points of view (fuzzy topology).

The problem of maximizing a function over a fuzzy domain or a fuzzy
function over a nonfuzzy domain is investigated in the second section.

The two following parts are devoted to the integration and differenti-
ation of a special kind of fuzzy functions—closely related to some fuzzy
relations on R2, The results that are presented here are a first attempt to
extend elementary notions in real analysis.

Lastly, fuzzy topology and categories of fuzzy sets are briefly surveyed.
Because of very specific and abstract features, neither is detailed here. The
interested reader is referred to the extensive bibliography of these topics at
the end of the chapter.

A.   VARIOUS KINDS OF FUZZY FUNCTIONS

A fuzzy function can be understood in several ways according to where
fuzziness occurs. Roughly there are three basic kinds of fuzzy functions,
from an interpretive point of view:

ordinary functions having fuzzy properties or satisfying fuzzy con-
straints;
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functions that just “carry” the fuzziness of their argument(s) without
generating extra fuzziness themselves: the image of a nonfuzzy element is a
nonfuzzy element;

ill-known functions of nonfuzzy arguments: the image of an element is
blurred by the jiggling of the function.

Of course, hybrid types may be considered. Moreover, we have the
abstract concept of an ordinary function between sets of fuzzy sets.

a. Fuzzily Constrained Functions

α. Fuzzy Domain—Fuzzy Range  (Negoita and Ralescu, 1975)

Let X and Y be two universes and f be an ordinary function from X to
Y: x[ X ° f(x) [ Y. Let A and B be two fuzzy sets on X and Y,
respectively. f is said to have a fuzzy domain A and a fuzzy range B iff

;x [ X, m
B
(f(x)) > m

A
(x). (1)

Example 1 “Big trucks must go slowly”: X is a set of trucks, Y is a
scale of speeds, f assigns a speed limit f(x) to each truck x. A is the fuzzy
set of big trucks; B is the fuzzy set of low speeds. The constraint (1) means,
“The bigger the truck, the lower its speed limit.”

Example 2 Many proverbs as well as regulations can be modeled by a
function with a fuzzy domain and a fuzzy range. For instance: “The
smaller the drink, the cooler the blood, the clearer the head.” “The more
thy years, the nearer thy grave.”

Now, consider a function g from Y to Z with a fuzzy domain B and a
fuzzy range C. g o f is a function from X to Z with a fuzzy domain A and
a fuzzy range C since m

B
(f(x)) > m

A
 (x), m

c
(g(y)) > m

B
(y), and y = f(x)

imply m
C
(g(f(x))) > m

A
 (x).

N.B.:  This kind of fuzzification is similar to the one that defines fuzzy
groups (1.F.b, 2.A.d).

β. Fuzzy Injection, Fuzzy Continuity, Fuzzy Surjection

Let f be an ordinary function from X to Y. f is said to be injective iff
;(x

1
, x

2
) [: X2, f(x

1
) = f(x

2
) implies x

l
 = x

2
. Let P be a fuzzy proximity

relation (3.C.d) in X2. f is said to be e-fuzzily injective iff  ;(x
l
, x

2
) [ X2,

f(x
l
) = f(x

2
) implies m

P
(x

l
, x

2
) > e.

A more general definition is: f is fuzzily injective iff

;(x
1
, x

2
) [ X2, m

P
(x

l
, x

2
)>m

Q
(f(x

1
), f(x

2
))                    (2)
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where Q is a fuzzy proximity relation in Y 2, This constraint, very similar to
(1), means “the closer the images, the closer their antecedents.”

The composition of fuzzily injective functions is still fuzzily injective.
f is said to be fuzzily continuous iff

;(x
l
, x

2
) [ X 2, m

Q
(f(x

1
), f(x

2
)) > m

P
(x

l
, x

2
). (3)

(3) obviously means “the closer the elements, the closer their images,”
which may appear consistent with our intuition of continuity. Note that
fuzzy continuity and fuzzy injection are here dual concepts.

Note that the usual definition of continuity is

;e, 'h, d(x
1
, x

2
) < h   implies   d ′(f(x

1
), f(x

2
)) < e

where d and d ′ are distances on X and Y, respectively. A relaxation of this
definition is:

;e [[0, 1], 'h[[0, 1], m
P
(x

l
, x

2
) > h  implies

m
Q
(f(x

l
), f(x

2
)) > e. (4)

Both definitions are equivalent when P and Q are likeness relations
(3.C.c) such that m

p
(x

1
, x

2
) (resp.: ,m

Q
(y

l
, y

2
)) = 1 implies x

1
 = x

2
 (resp.:

y
l
 = y

2
) and d and d ′ are metrics valued on [0, 1]. Note that (3) implies (4)

(h = e). Conversely, the dual of (4) provides a less strict definition of fuzzy
injection:

;e[ [0, 1], 'h[ [0, 1], m
Q
 (f(x

1
), f(x

2
)) > h  implies

m
p
(x

1
, x

2
) > e.

The composition of fuzzily continuous functions (in the sense of (3) or
(4)) is still fuzzily continuous.

Recall that f is said to be onto (surjective) iff

;y [ Y, 'x [ X, y = f(x).

Given a proximity relation Q in Y, f is said to be e-fuzzily onto iff

;y [ Y, 'x [ X, m
Q
(y, f(x)) > e. (5)

More generally, f is said to be fuzzily surjective on the fuzzy set B iff

;y [ Y, 'x [ X,   m
Q
 (y, f(x)) > m

B
(y). (6)

(6) means the more y belongs to B, the closer is a neighbor of y having an
antecedent

Remarks 1  Definitions (1), (2), (3), and (6) implicitly assume that
membership grades in different fuzzy sets can be compared. In fact, we
tacitly use relative membership.
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2  The same definitions are related to the implication ⇒ (see III.1.B.b.
β). The truth value of a consequence is at least equal to the truth value of
the premise.

b. Fuzzy Extension of a Nonfuzzy Function  (Zadeh, Reference from
II.1, 1965)

Let f be a nonfuzzy function from X to Y; the image of a fuzzy set ~x on
X is defined by means of the extension principle. It is f( ~x) defined as

µ
f x̃( ) y( )  =   

x∈f –1 y( )
sup  µ x̃ x( )

= 0   if f – 1(y) = Ø

where f -1(y) is the set of antecedents of y. A function of a fuzzy variable
from ~3(X) to ~3(Y) is thus constructed; its restriction to X is nonfuzzy.
Moreover, note that the image of a fuzzy singleton λ / x is λ /f(x). In that
sense f carries fuzziness without altering it.

Examples 1  ~y = (a ( ~ x) % b, (a, b) [ R2, X = Y = R.
2  y = eλ~ x, λ [ R.
It is easy to see that the composition of two extended functions from

~3(X) to ~3(Y) and from ~3(Y) to ~3(Z), respectively, is the extension of the
composition of the original functions. This composition is associative.
Note also that f(~x) = ~x + R where R is defined by

µR x,  y( )  =  
1   iff     y = f x( ),
0    iff      otherwise.





c.   Fuzzy Function of a Nonfuzzy Variable

Two points of view can be developed depending on whether the image
of x [ X is a fuzzy set ~f(x) on Y or x is mapped to Y through a fuzzy set
of functions.

α.   Fuzzifying Function

A fuzzifying function from X to Y is an ordinary function from X to
~P(Y), ~f : x ° ~f(x).

The concept of a fuzzifying function and that of a fuzzy relation are
mathematically equivalent: ~f is associated with a fuzzy relation R such that

;(x, y) [ X × Y,   m
~f(x)

(y) = m
R
 (x, y).

~f(x) is a section of R (see 3.A.a).
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Example ~y = (~a ( x) % ~b where (~a, ~b) [ [3 (R)]2, and more generally
any function with fuzzy parameters.

The composition of fuzzifying functions is defined by

  
µ

g̃ o f̃ x( )
z( ) =

y∈Y
sup min µ

f̃ x( )
y( ),  µ

g̃ y( ) z( )( )
where ~g is a fuzzifying function from Y to Z. The interpretation is: given
an intermediary point y, the membership of an element z in g + f(x) is
bounded by the membership of y in ~f(x) and by that of z in ~g(y). The final
membership of z in ~g + ~f(x) is given by the best intermediary point. Note
that the composition of fuzzifying functions is nothing but the sup-min
composition of their associated fuzzy relations. This composition is thus
associative.

N.B.:  1.  Fuzzifying functions have been studied by Sugeno (1977)
under the name of fuzzy correspondences.

2.  Fuzzifying functions (resp. fuzzy relations) may have fuzzy domain
and fuzzy range in the sense of a • α (Negoita and Ralescu, 1975):

m
R
(x, y) = m

~f (x)
(y) < min (m

A
(X), m

B
(y))

where A and B are respectively the fuzzy domain and the fuzzy range.
Such fuzzy functions can also be composed.

β.   Fuzzy Bunch of Functions

A fuzzy bunch F of functions from X to Y is a fuzzy set on YX, that is,
each function f from X to Y has a membership value m

F
(f) in F.

This definition is not equivalent to that of a fuzzifying function. A
fuzzifying function ~f is a fuzzy bunch F in the following sense: ; α [ [0, 1],
the equation m

~f(x)
(y) = α defines one or several univalued functions f α

i

from X to Y and the fuzzy bunch is F = <
i
Fi where Fi = ∫α∈ 0, 1] ] α f α

i .
Conversely, a fuzzy bunch is not reducible to a fuzzifying function since

there may be two functions f and g from X to Y such that 'x, f(x) = g(x)
= y and m

F
(f) Þ m

F
(g). This can never happen for a fuzzifying function

because to each pair (x, y) is assigned a unique membership value m
~f(x)

(y)
= m

R
(x, y). In a fuzzy bunch each pair (x, y) has several possible member-

ship values. In that sense a fuzzy bunch is a multivalued fuzzy relation.
However, if we want to reduce the bunch to a fuzzifying function, we can
suppress the ambiguity of the membership value by choosing a combina-
tion rule r (sup, inf, . . . ) according to the situation:

m
R
(x, y) = supm

F
(f)      (if r = sup).

f
y = f(x)

Let F and G be two fuzzy bunches from X to Y and from Y to Z,
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; ~x [ ~3(X),   x̃ # ~f ( ~x).

respectively. The composition H = G + F of two fuzzy bunches is a fuzzy
bunch from X to Z defined by

;h,  m
H
(h) = sup min(m

F
(f), m

G
(g)).

f, g
h = g + f

This composition is associative.

Remark   Fuzzy functions of a nonfuzzy variable may have two seman-
tic interpretations:

we do not know the precise image y of x; we know only a distribution  of
possibility, of probability, of belief (see Chapter 5) of the value of y;

the image of x is actually blurred; it is a fuzzy point (or spot) ~f (x) in Y.

d.   Nonfuzzy Function of a Fuzzy Variable

Let f be a function from ~3(X) to ~3(Y). An example of such an f is the
extension of an ordinary function from X to Y.  Another example is a fuzzy
relation R using sup-min composition: ̃x  ° x̃ + R = ỹ . Note that in terms
of fuzzifying function (~f ) we can define ~f(x) = x̃ + R, which naturally
extends the domain of f to ~3(X). The composition of such extended
fuzzifying functions is obviously consistent with that of fuzzy relations:
~g[ ~f( x̃ )] = ( x̃ + R) + Q = (g + ~f )( x̃ ) where Q is the fuzzy relation asso-
ciated with ~g.

An ordinary function from ~3(X) to ~3(Y) is more general than an
extended fuzzifying function. For instance, an extended fuzzifying function
f is such that

      
  

∀ x̃,  ˜ ′x( ) ∈ 3̃ X( )[ ]2

,  
x̃ ⊆ ˜ ′x  implies f̃ x̃( ) ⊆ f̃ ˜ ′x( ),
f̃ x̃∪ ˜ ′x( ) = f̃ x̃( ) ∪ f̃ x̃( ).







On the contrary, consider the complementation function w from ~3 (X) to
~3(X): w ( ~x) = (~x). Obviously, we have ̃x # x̃ ′ implies w ( ~x ′) # w ( ~x) and
w( ~x < ~x ′) = w ( ~x) > w ( ~x ′).  Hence, w is not an extended fuzzifying function
and there is no fuzzy relation associated with w.

An extended fuzzifying function is entirely characterized by its restric-
tion to the ordinary singletons of its domain, i.e., by its associated fuzzy
relation, and does not carry more information. This is not true for any
function from ~3 (X) to ~3 (Y)

N.B.: When the fuzzy relation R associated with a fuzzifying function ~f
from X to ~3(X) is reflexive, then

The converse holds.
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B. FUZZY EXTREMUM

Usually, the maximum (or minimum) of a function f over a given
domain D is attained at a precise point x

0
. However, we may be interested

in the behavior of the function in a neighborhood of x
0
; the concept of a

maximizing set (minimizing set) provides a tool for modeling this situation.
The notion of an extremum also must be generalized to deal with problems
such as an extremum of a function over a fuzzy domain or an extremum of
a fuzzy function over a domain.

a.   Maximizing and Minimizing Set  (Zadeh, 1972)

Let f be a real-valued function whose domain is a set X. f is assumed to
be bounded from below by inf (f) and from above by sup(f). The maximiz-
ing set is a fuzzy set M in X such that:

∀ x ∈X;      µM x( ) =
f x( ) − inf f( )

sup f( ) − inf f( ) .

We always have m
M
(x

0
) = 1 ;x

0
 such thatf (x

0
) = sup (f), and m

M
(x) = 0

;x such thatf (x) = inf (f ).
Clearly, the maximizing set provides essential information about the

effect on the value of the objective functionf of choosing values of x other
than x

0
.

Remark   Another possible membership function for M is the nth power
of the normalizedf, for instance,

µM x( ) =
f x( ) − inf f( )

sup f( ) − inf f( )










n

.

The maximizing set is invariant under linear scaling, that is, M does not
change when f is replaced by kf, k [ R.

The fuzzy maximum of f, i.e., a fuzzy set of Y, the range of f (Y # R), is
the image under f of the maximizing set, i.e., f (M):

; y [ Y, m
f( (M)

(y) =   sup   m
M
(x)

x [ f -1 (y)

N.B.:  The minimizing set of f is defined as the maximizing set of −f.

b.   Maximum of a Nonfuzzy Function over a Fuzzy Domain

Two approaches exist for this problem according to whether a nonfuzzy
maximum or a fuzzy one is sought.
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α. Nonfuzzy Maximum

Let D be the domain over which we want to maximize f, a function from
X to R. Let M be the maximizing set off. When D is nonfuzzy, an element
x

0
 that maximizes f in D is such that

m
M
(x

O
) = sup m

M
(x) = sup min (m

M
(x), m

D
(x)).

x [ D x [ X

When D is fuzzy, the maximization problem can be understood as: find
an element of X that belongs as much as possible both to the maximizing
set and to the fuzzy domain D. The Gorresponding membership grade is the
consistency of M and D, i.e.,

hgt(M > D) = sup min (m
M
(x), m

D
(x)) = m(x

0
).

x [ X

Zadeh (Reference from III.2, 1965) first used the product f(x) • m
D
(x)

instead of min and the maximizing set.
An analysis of the search of a maximum for m(x) = min(m

M
(x), m

D
(x))

was carried out by Tanaka et al. (1973). They used the resolution of D into
its α-cuts D

a
, noting that

m(x
0
) = sup min (m

M
(x), m

D
(x)) = sup  min (α, sup (m

M
(x)).

x [ X α[[0,1] x[D
a

The function g(α) = sup
x [ Da

 m
M
(x) is nonincreasing (α

l
> α

2
 implies D

a1

# D
a2

); hence if g is continuous, the maximum is attained for α* such that
α* = sup

x [ Da*
m

M
(x) = m

M
(x

0
); hencex

0
[ Dα∗ andm

D
(x

0
) > m

M
(x

0
). The

initial maximizing problem is thus equivalent to the maximization of m
M

over the nonfuzzy domain T = { x, m
D
(x) > m

M
(x)}, provided that g(α) is

continuous. A sufficient condition is given by Tanaka et al. (1973): if D is
a strictly convex fuzzy set on Rn (;(x, y) [ supp D, x Þ y, ; l [ ] 0, 1 [,
m

D
(l x + (1 - l)y) > min(m

D
(x), m

D
(y))), then g is continuous.

The main drawback of this approach is that when m
D
(x

o
) is small, the

solution is not very satisfactory because x
o
 does not belong “enough” to

D; we may prefer a solution that belongs more to D although it will entail
a shift of x

0
 toward smaller values of m

M
. The second approach copes with

this difficulty.

β. Fuzzy Maximum

Let N(α ) = { x
0

[ X, f(x
0
) = sup

x [ D a
f(x) } and R = <

a
N(α ) N(α) is

the set of elements maximizing f on Dα. The fuzzy set of maximizing
elements is N = D > R. The following proposition holds:

; x [ R, m
N
(x) = sup

x [ N
α.

(Note that N(α) is not the α-cut of N.)
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Proof: Let x
0

[ R. Obviously, x
0

[ D
l

> R for l < m
D

x
0
 only. Note

that

D
l

> R = D
l

> (< N (α)) = D
l

> (< N (α))
α α > l

b e c a u s e; α , l , N ( α ) – N ( l ) = Ø o r N ( α ) – N ( l ) D
l
. H e n c e ,x

0

[<a >mD(x0) N(α).
Moreover, if ' α ., m

D
(x

0
) such that x

0
[ N (α), then x

0
[ D

a
, which is

contradictory when α . m
D
(x

0
). Hence, x

0
[ N (α) for some α < m

D
x

0
.

On the whole x
0
[ N (m

D
(x

0
)) and x

0
Ó N (α) for α . m

D
(x

0
).

Hence, sup
x [ N (a)

α = m
D
(x

0
) = m

N
(x

0
) since x

0
[ R. Q.E.D.

Conventionally, ; x Ó R, sup
x [ N(a)

α = 0.

The fuzzy value of the maximum of f over D is the fuzzy set of R
induced from N through f, i.e., f(N) such that

m
f(N)

(y) =  sup   m
N
(x).

   x[ f -1 (y)

Note that m
f (N)

 is a nonincreasing function on suppf(N). If we want to
improve the value y of the maximum, we must broaden the maximization
domain D

a
, i.e., diminish α. In Zadeh's notation

  
f N( ) = α  sup

x∈DαR∫ f x( ).

This approach was developed by Orlovsky (1977). He also developed
another definition of N, by considering the maximal elements over X, in
the sense of Pareto, of the set of pairs (f(x), m

D
(x)); (f(x

0
), m

D
(x)) is said

to be Pareto maximal iff

{( f(x), µ
D

(x)), f(x) > f(x
0
) and µ

D
(x) > µ

D
(x

0
) = {( f(x

0
), µ

D
(x

0
))}.

Let P be the set of elements x such that (f(x), m
D

(x)) is Pareto maximal.
When X = Rn and the functions f and m

D
 are continuous, Orlovsky has

proved that if N′ = D > P, then f(N′) = f(N), which expresses the equiva-
lence between both of Orlovsky’s approaches.

N.B.: The approach developed in ß is consistent with the extension
principle. The function to be extended is from 3(X) to R: D °
sup

x[D
 f(x), the membership function of the extension, when D is fuzzy, is

µ y( )  =  
A:

y =supx∈A f x( )

sup µD A( )      where     µD A( )  =  
α     if  A =  Dα ,

0      otherwise.




D is viewed as a fuzzy set on 3(X) whose support is the set of its α-cuts.

À



104II.4.  Fuzzy Functions

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

Then m(y)= m
f (N)

(y). With a less drastic definition of m
D
 on 3(X),

consistency with the extension principle may fail.

Example  Fig. 1 illustrates both approaches α and b. ; α > m
D

(b), the
element that maximizes f over D

a
 is a. ; α [ ] m

D
(b), m

D
(c) ], the element

that maximizes f over D
a
 is on the right edge of D

a
.  ; α < m

D
(c), this

element is always c. Hence suppN = { a} < [b, c], supp f(N) = [f(b), f(c)]
= [f(a), f(c)]. Note that m

f (N)
(f(a)) = 1 and m

f (N)
(y) < m

D
(b) for y >f(a).

The maximizing set of f is sketched with a dashed line; the method of
Tanaka et al gives (x*, α*). Generally x* [ suppN as in Fig. 1; that is to
say, approach α is included in Orlovsky’s.

Figure 1

c.   Fuzzy Maximum of a Fuzzy Function on a Nonfuzzy Domain

Let ~f be a fuzzifying function from X to R and D a nonfuzzy domain of
X over which we want to maximize f. For simplicity, assume X is finite.

Since ~f(x) is a fuzzy set on R, a first idea for defining the value ~m of the
maximum of f over D is to use the operator max and state ~m =
maxX [ D

 ~f(x). This quantity exists because D is finite. It is a fuzzy set on R.
There is ambiguity for the choice of an element in D realizing ~m because ~m
is generally not one of the ~f(x)’s (see 2.B.d.e). Hence, we must keep track
of the x’s that actually contribute to the membership function of ~m.
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Note that if | D| = n:

µ m̃ y( )    = sup
y1 , . . ., yn

y = max y1 , . . ., yn( )
min µ

f̃ x1( ) y1( ),...,µ
f̃ xn( ) yn







  

= sup
f ∈RD

y=maxi=1,n f xi( )( )
min
j=1,n

 µ
f̃ x j( ) f x j( )( )

or in Zadeh’s notation:

  
m =

f ∈RD∫ min
j=1,n

µ
f̃ x j( ) f x j( )( )  sup

x∈D
f x( ).

An alternative method considers equations m
~f (x)

(y) = α, α [ ]0, 1]. When
these equations define univalued functions y = f

a
(x), we may think of

maximizing each f
a
 over D and state

′m̃ =
α ∈]0,1]∫ α  sup

x ∈D
f α x( )

N.B.:  There are possibly several f
a
 such that m

~f (x)
(f

a
(x)) = α, ; x [ X.

When RD can be replaced by the set {f
a
, α [ ]0, 1]}, then ~m9 = ~m.

Example Let ~f(x) be a fuzzifying function from R to R such that ~f(x) is
a triangular fuzzy number for any x. D = { x

1
, x

2
, x

3
, x

4
, x

5
} . On the

left-hand part of Fig. 2 are represented the elements of D and the curves
f
1
, f

a
+, f

a
- that satisfy, ; x [ X,

m
~f (x)

(f
1
(x)) = 1,    m

~f (x)
(f

a
-(x)) = m

~f (x)
(f

a
+ (x)) = α.

Figure 2

The right-hand part of Fig. 2 pictures the five fuzzy numbers ~f(x
j
), i = 1, 5.

~m is the dashed line.  Only x
2
, x

3
, x

4
, contribute to building m

~m
 Moreover,

max f
a

+ (x) = f
a

+ (x
4
), max f

1
(x) = f

1
(x

3
), max f

a
-(x) = f

a
-(x

2
)

x [ D x [ D x [ D
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~m and ~m9 are thus consistent for these points. From Fig. 2, right-hand side,
we see that

m̃ = α f α
−

α∈0, α−] ]∫ x2( ) + α f α
−

α∈α− ,1[ ]∫ x3( ) + α f α
+

α∈α + ,1[ ]∫ x3( )

+ α f α
+

α∈ 0, α +] ]∫ x4( ) = ˜ ′m

in Zadeh’s notation. a – and a + are such that f
a –(x2

) = f
a –(x3

) and
f
a+(x4

) = f
a+(x3

), respectively. More specifically, for

a [ [0, a –], f
a
–(x

2
) > f

a
–(x

i
) ;i,

a [ [a –, 1], f
a
–(x

3
) > f

a
–(x

i
) ;i,

a [ [a +, 1], f
a
+(x

3
) > f

a
+(x

i
) ;i,

a [ [0, a +], f
a
+(x

4
) > f

a
+(x

i
) ;i.

The fuzzy set on D maximizing f is here N = a– / x
2

+ 1 / x
3

+ a+ / x
4
.

More generally, if

˜ ′m = α sup
x∈D

f α
α∈0, 1] ]∫ x( ) = α f α

α∈0,1] ]∫ x α( )( )

then

N = α x α( )
α∈0,1] ]∫      (symbolically).

C. INTEGRATION OF FUZZY FUNCTIONS OVER (NON)FUZZY INTERVALS

This section is concerned with the possibility of extending elementary
results in the analysis of real-valued ordinary functions to fuzzifying
functions from R to R. This attempt is very similar to that of Chapter 2,
section B where results in real algebra have been extended to fuzzy
numbers. Unsurprisingly, the most remarkable properties will be obtained
for fuzzifying functions that map into the set of real fuzzy numbers.
Integration over a nonfuzzy and a fuzzy interval are investigated. The
main reference for this material is Dubois and Prade (1978).

a. Integral of a Fuzzifying Function over a Nonfuzzy Interval

a. Definition

Let f be a fuzzifying function from [a, b] # R to R such that ;x [ [a, b],
~f(x) is a fuzzy number, i.e., a piecewise continuous convex normalized
fuzzy set on R. ;a [ ]0,1], the equation m

~f(x)
(y) = a with x and a as
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parameters is assumed to have two and only two continuous solutions
y = f

a
+ + (x) and y = f

a
- (x) for a ≠ 1 and only one, y = f(x), for a = 1,

which is also continuous. f
a
+ and f

a
– are defined such that

f
a′
+(x) > f

a
+(x) > f(x) > f

a
–(x) > f

a′
– (x)       ;a, a′,   with a′ < a.

These functions will be called a-level curves of ~f (see Fig. 3). The integral
of any continuous a-level curve of ~f over [a, b] always exists. Unless
specified, ~f always satisfies these assumptions.

Figure 3

An intuitive way of defining the integral ~I(a, b) of ~f over [a, b] is to
assign the membership value α to the integral of any a-level curve of ~f over
[a, b]. Using Zadeh’s notation, ~I(a, b) is the fuzzy set on R

Ĩ a, b( ) = α  fα
−

a

b

∫α∈ 0,1] ]∫ x( )dx+ α f α
+

a

b

∫α∈ 0,1] ]∫ x( )dx. (7)

This definition is consistent with the extension principle. Let us show this
for a particular case.

Let L be the set of functions l from R to R such that ∫a
bl(x)dx exists and

l is made of a denumerable union of pieces of level curves (see Fig. 4).
Hence l = <

i[N
l
i
 where l

i
 is continuous. The curve l

i
 delimits an area A

i

whose surface is T
i
. The fuzzifying function is viewed as a fuzzy set on L

such that m
~f
(l) = inf

i[N
m

~f
(l

i
) with m

~f
(l

i
) = a

i
 iff l

i
 is part of an a

i
-level

curve of ~f.

Figure 4
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According to the extension principle, we have

µ
Ĩ a, b( ) T( ) =  sup

l∈L : T=∫a
b l x( )dx

 inf
i

µ
f̃

li( ). (8)

The following proposition holds when m
~f(x)

(y) is continuous with respect
to y and x and ;x, ~f(x) is a fuzzy number without constant-membership
intervals: ;T [ R, ' an a-level curve f

a
, delimiting an area A whose

surface is T, such that

µ
Ĩ a, b( ) T( ) = α and T = fα

a

b

∫ x( )dx.

Proof: The double continuity of m
~f(x)

(y) with respect to y and x implies
that of a-level curves with respect to a. Denote by f

a
 a generic a-level

curve of ~f. ;T, 'a and f
a
 such that ∫a

b f
a
(x)dx = T and f

a
 is unique. Let

L
T

= { l [ L 3 ∫a
b l(x)dx = T}. ;l [ L

T
– { f

a
}, l is made of pieces l

i
 on

each side of f
a
 because were they on the same side of f

a
, the so-delimited

area could not have a surface T (see Fig. 4). Owing to the bell shape of
f(x), inf

i
m

~f
(l

i
) < a. Hence, m

~I(a, b)
(T) = a. Formulas (7) and (8) are consis-

tent. Q.E.D.
N.B.: When m

~f(x)
(y) is only piecewise continuous with respect to y, the

mapping T ° f
a
, ∫a

b f
a
(x)dx = T can be multivalued because some level

curves may overlap. However, the level curves of any fuzzifying function
can never cross each other since they are defined by the equations
a =m

~f(x)
(y), a [ ]0, 1].

When ~f(x) has constant-membership intervals, the level curves may
degenerate into “level areas.”

Formula (8) could be extended naturally by replacing L with the set G
of functions g such that ∫a

b g(x)dx exists:

µ
Ĩ a, b( ) T( ) = sup

g∈G:T=∫a
b g x( )dx

µ
f̃

g( ) (9)

with m
~f(x)

(g) = inf
x [ [a, b]

m
~f(x)

(g(x)). Consistency of (8) and (9) can be con-
jectured, but the proof requires some precise mathematical tools and is
beyond the scope of this book.

N.B.: Since interval-valued functions are particular cases of fuzzy-
valued functions, the above approach may be viewed as an attempt to
generalize integrals of ordinary set-valued functions (see Aumann, NF
1965). The latter have arisen in connection with economics problems.

β. Calculations of ~I(a, b) when f in a L-R type Fuzzifying Function

A fuzzifying function is said to be an L-R type fuzzifying function iff it
satisfies the requirements of a and f(x) = (f(x), s(x), t(x))

LR
 is an L-R

type fuzzy number ;x [ [a, b]. f, s, and t are positive integrable functions
on [a, b]. Note that the 1-level curve of ~f(x) is f(x), i.e., the mean value of
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~f(x) ;x. Obviously, the two a-level curves of f(x) are
f
a
– (x) = f(x) – s(x)L– 1(a), f

a
+ (x) = f(x) + t(x)R– 1(a).

Integrating f
a
– (x) over [a, b] gives

f α
−

a

b

∫ x( )dx = f
a

b

∫ x( )dx− L−1 α( ) s
a

b

∫ x( )dx = Z.

Denoting by F, S, T, antiderivatives of f, s, t, respectively, we get

Z = F(b) – F(a) – L– 1(a)(S(b) – S(a))

or

  

L
F b( )  −  F a( )  −  Z

S b( )  −  S a( )






= α          ∀ Z < F b( )  −  F a( ).

Note that S(b) – S(a) > 0 since b > a. The same reasoning holds for f
a
+

and we get

Ĩ a, b( ) = f x( )dx
a

b

∫ ,  s x( )dx
a

b

∫ ,  t x( )dx
a

b

∫





LR

, (10)

which is the result of (8) when ~f is an L-R fuzzifying function.
To integrate an L-R fuzzifying function over a nonfuzzy interval [a, b], it

is sufficient to integrate mean value and spread functions over [a, b]. The
result is an L-R fuzzy number.

g. Relationship with Riemann Sums

Let (x
l
, . . . ,x

n
) [ [a, b]n be made up of n real numbers such that

a = x
l
< x

2
< · · · <x

n – 1
< x

n
= b

and ~S
n
 be the fuzzy sum (x

2
– x

l
) ~f(x

2
) % (x

3
– x

2
) ~f(x

3
) · · ·% (x

n
– x

n – 1
)

f(x
n
). When f is an L-R type fuzzifying function, the fuzzy Riemann sum

~S
n
 can be written.

∑̃n = xi − xi−1( )
i = 2

n

∑ f xi( ),  xi − xi−1( )
i = 2

n

∑ s xi( ),  xi − xi−1( )
i = 2

n

∑ t xi( )










LR

.

Owing to the continuity of L and R and to the existence of the integrals
over [a, b] for f, s, t, the limit of
~S

n
 exists and is

= f x( )dx
a

b

∫ ,  s x( )dx
a

b

∫ ,  t x( )dx
a

b

∫





LR

= Ĩ a, b( ).

lim
n→+∞

∑̃n =

lim
n→+∞

xi − xi−1( )
i = 2

n

∑ f xi( ),  lim
n→+∞

xi − xi−1( )
i = 2

n

∑ s xi( ),  lim
n→+∞

xi − xi−1( )
i = 2

n

∑ t xi( )










LR
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So, when f is an L-R type fuzzifying function, the extension principle
does generalize Riemann sums, and hence the integration defined in this
section generalizes Riemann’s integration.

N.B.: Denoting by ~F(x) the L-R type fuzzifying function (F(x), S(x),
T(x))

LR
, which we may call an “antiderivative” of ~f, the formula

~I (a, b) = ~F(b) * ~F(a)

does not hold any longer because ~I (a, b) = (F(b) – F(a), S(b) – S(a),
T(b) – T(a))

LR
, which differs from

~F(b) * ~F(a) = (F(b) – F(a), S(b) + S(a), T(b) + T(a))
LR

.

b. Integral of a Nonfuzzy Function over a Fuzzy Interval

a. Definition

Let A and B be two fuzzy sets on R. The extension principle allows
defining the integral of a real-valued ordinary function f over the fuzzy
interval (A, B) bounded by A and B, say I(A, B):

µ I A, B( ) Z( ) = sup
x, y : Z=∫ x

y f u( )du

min µ A x( ), µ B y( )( ). (11)

b. One of the Bounds is Not Fuzzy

We consider the integral of f over [a, B):

µ I a, B( ) Z( ) = sup
y : Z=∫a

y f u( )du

µB y( ) = sup
y : Z=F y( )−F a( )

µB y( )

where F is an antiderivative of f. We see that I(a, B) = F(B) * F(a) is the
value of the extended F(x) – F(a), when x = B.

g. Both Bounds are Fuzzy

(11) can be changed into

m
I(A, B)

(Z) = sup
Z=F y( )−F x( )

min µ A x( ), µB y( )( )

=
  
sup
x∈R

min µ A x( ), sup
Z=F y( )−F x( )

µB y( )





=
  
sup
x∈R

min µ A x( ), µ I x, B( ) Z( )( ),
that is, I(A, B) = A + I(·, B) = A + (F(B) * F(·)). I(A, B) is the fuzzy
value of the extended fuzzifying function y = F(B) * F(x) for x = A,
using the results of A.d. Hence, I(A, B) = F (B) * F(A), which can be
denoted ∫A

B f(x)dx.
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N.B.: When A and B are fuzzy numbers of L-R type, the calculation
of I (A, B) is not especially simplified. For instance, A = (a, a, a )

LR'
 then

  
µF A( ) Z( ) = L

F−1 Z( ) − a

a







    for   F−1 Z( )  ø a and F injective.

I (A, B) will  not generally be an L-R type fuzzy number when A and B are.

Remark   An alternative approach to the integral of a nonfuzzy function
over a fuzzy interval could be the following.

Let C be a fuzzy interval modeled by a flat fuzzy number (see 2.B.e.η.).
The integral over C of the function f can be i(C) = #

R
m

C
(x) • f(x)dx.

What is obtained is a median value between the crisp integrals i(C
1
) and

i(suppC) where C
1
 is the 1-cut of C. This point of view departs from the

fuzzy evaluation of the fuzzy surface bounded by A, B, f and the abscissa
axis.

c.   Integral of a Fuzzifying Function over a Fuzzy Interval

Zadeh’s extension principle gives now

    

µ
Ĩ A, B( )

Z( ) =     sup
l∈L, x, y( )  ∈ R2 , x ø y

∫x
y l t( )dt=Z

 min µ A x( ),  µB y( ),  µ
f̃

l( )( ). (12)

Where ~f is a fuzzifying function satisfying the assumptions of a and A, B
are fuzzy numbers that delimit a fuzzy interval, ~I(A, B) is the fuzzy
integral. (12) can be written

  

µ
Ĩ A, B( )

Z( )  =  sup 
x ø y

min µ A x( ),  µ B y( ),  sup
l∈L

z= x
yl t( ) dt∫

 µ
f̃

l( )
















                =  sup 
x ø y

min  µ A x( ),  µ B y( ),   µ
Ĩ x,y( )

Z( )[ ].
Note that since ~I (x, y) = –I (y, x), the condition x < y, which was a
priori imposed in (12) for the sake of consistency with (8), can be dropped.

Thus, ~I (A, B) is the value of the extended ~I (x, y) for x = A, y = B.

N.B.: 1. We could have considered changing (12) into

  

µ
Ĩ A, B( )

Z( ) =  
l∈L

sup  min µ
f̃

l( ),   sup
x, y, x ø y

Z = ∫x
y l x( )dx

min µ A x( ),  µ B y( )( )











. (13)

The calculation carried out in this way can be shown to be very unwieldy
(see Dubois and Prade, 1978). Even if we assume that the upper bound is
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attained for an a-level curve of ~f, the determination of a can be very
difficult because the already-mentioned upper bound is not necessarily
attained for equal values of the arguments of the min.

N.B.:  2.  Since from a, ~I (x, y) Þ ~F (y) * ~F (x) when ~F is an anti-
derivative of ~f, we do not have ~I (A, B) = ~F (B) * ~F (A) either. We remark
that, denoting by L an antiderivative of l, (13) can be written:

    
µ

Ĩ A, B( )
Z( )  =  sup 

l ∈ L
min µ

f̃
l( ),  µ L B( )@L A( ) z( )( )

using the results of b. The intractability of (13) is thus related to the fact
that ~I (A, B) Þ ~F (B) * ~F (A).

d. Some Properties of the Integral Operator

a. Linearity
It is easy to see using definition (8) that

  
 f̃ x( )% g̃ x( )( ) dx =  

a

b

∫   f̃ x( ) dx %  
a

b

∫  g̃ x( ) dx.  
a

b

∫
#
a
b ~f (x)dx, #

a
b ~g(x)dx denote the integrals of the fuzzifying functions ~f and

~g, respectively. When ~f and ~g are L-R type fuzzifying functions, the result
is also easily obtained by considering Riemann sums.
We also have

               
  

 f x( ) + g x( )( ) dx =  
ã

b̃

∫   f x( ) dx %  
ã

b̃

∫  g x( ) dx.  
ã

b̃

∫              (14)

which is easy to see reasoning with a-cuts.
On the contrary,

  
 f x( ) dx %  

ã

b̃

∫   f x( ) dx ⊇  
ã

c

∫  f x( ) dx.  
ã

c

∫                    (15)

The equality does not hold except if ~b is a real number.

Proof: Let [ a(a), a (a) ], [b(a), b (a)], [ c(a), c (a)] be the a-cuts of ~a, ~b, ~c
respectively.

The a-cuts of the left-hand side of (14) is

 f x( ) + g x( )( )dx,  
a

b

∫   f x( ) + g x( )( )dx 
a

b

∫




.

It obviously equals the a-cuts of the right-hand side of (14).



113II.4. Fuzzy Functions

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

The a-cut of the left-hand side of (15) is

f x( )  dx +
a

b

∫ f x( )  dx,  f x( )  dx +
a

b

∫ f x( )  dx 
b

c

∫b

c

∫





which contains

f x( )  dx,  f x( )  dx
a

c

∫a

c

∫





   Q.E.D.

β. Relationship with <, >

Denote by #
a
B f(x)dx the integral of the nonfuzzy function f over the

fuzzy interval [a, B), a [ R, B [ ~3(R); then:

    
f x( )  dx =  f x( )  dx

a

B

∫



  ∪  

a

B∪C

∫ f x( )  dx
a

C

∫



 ,    C ∈3̃ R( );

when f is positive,

f x( )  dx =  f x( )  dx
a

B

∫



  ∩  

a

B∩C

∫ f x( )  dx
a

C

∫



 .

These properties are particular cases of h(B < C) = h(B) < h(C); and,
when h is injective, h(B > C) = h(B) > h(C) where h is any extended
function from ~3(X) to ~3(Y) ; B, C [ ~3(X).

e.   Example

Consider the function ~ax % ~b = ~y where ~a = (a, a, a )
LL

 ~b = (b, b, b )
LL

fuzzy numbers of the L-L type. The expressions for m
~y
(t) are

  

x ù  0,   t ø ax+ b:   µ ỹ t( ) = L
ax+ b− t

a x+ b






;

x ù  0,   t ù  ax+ b:   µ ỹ t( ) = L
t− ax+ b( )

ax+ b





;

x ø 0,    ax + b ù t:   µ ỹ t( ) = L
ax+ b− t

− ax+ b






;

x ø 0,    ax + b ø t:   µ ỹ t( ) = L
t− ax+ b( )
−a x+ b






.
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Assuming w = L–1, the a-level curves are respectively in each case

  

for  x ù  0  
gα

− x( ) = x a− a w( ) + b− b w,

gα
+ x( ) = x a+ aw( ) + b+ bw,







for  x <  0 
gα

− x( ) = x a+ aw( ) + b− b w,

gα
+ x( ) = x a− a w( ) + b+ bw,







and are pictured on Fig. 5. Note that gα
+ (x), x < 0, has the same slope as

gα
− (x), x > 0, and gα

− (x), x r 0, has the same slope as gα
+ (x), x < 0. Using

the results about integration, #
0
x ( ~as% ~b) ds has membership function

  

x ù  0,    
a

2
x 2 + bx ù  t,       µ t( ) = L

a 2( ) x 2 + bx− t

a 2( ) x 2 + b x









;

x ù  0,    
a

2
x 2 + bx < t,       µ t( ) = L

t− a 2( ) x 2 + bx[ ]
a 2( ) x 2 + bx












;

and #
x
0 ( ~as% ~b) ds has membership function:

  

x ø 0,    − a

2
x2 − bx ù  t,    µ t( ) = L

− a 2( ) x2 − bx− t

a 2( ) x2 − b x









;

x ø 0,    − a

2
x2 − bx ø t,    µ t( ) = L

a 2( ) x2 + bx+ t

a 2( ) x2 − bx









;

Figure 5
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and

    
0

x

∫ ãs%b̃( )ds = a

2
x2 + bx,  a

x2

2
+ b x,  a

x2

2
+ b x









LL

,   x > 0,

    
0

x

∫ ãs%b̃( )ds = −  
a

2
x2 − bx,  a

x2

2
− b x,  a

x2

2
− b x









LL

,   xø0,

It is nothing but the fuzzy function ~I(0, x) = ~y = ~a (x2 /2) % ~bx, an ex-
tended primitive of y = ax + b, for x > 0, and ~I(x, 0) = –( ~ ~a (x2 /2) % ~bx)
for x < 0.

The integral #
0
~c(ax + b) dx where a and b are no longer fuzzy is, from

b . g, (a~c2 / 2) % b~ c, which, in this example, can be computed easily through
approximate sum and product formulas (see 2.B.e). Lastly, for ~c > 0,

  
0

c̃

∫ ãx %  b̃( )dx = −  
ãx2

2
 %  b̃x









0

c̃

= ã (
c̃( )2

2
 %  b̃( c̃.

Now consider #
~u
~n ( ~as% ~b) ds, where ~u and ~v are positive fuzzy numbers.

First,

Ĩ (u,υ) =
a

2
υ2 − u2( ) + b υ − u( ),  a  

υ2 − u2( )
2

+ b υ − u( ),  






a
υ2 − u2( )

2
 +  b υ − u( )







LL

 

with v > u, using the main result of a.ß.
Spreads are positive since v > u. Thus,

  

Ĩ (u,  υ) = ã  
υ2 − u2

2







 %  b̃ υ − u( )

and from b.g,

  

Ĩ (ũ, υ̃) = ã (  
ν( )2

* ũ( )2

2












 %  b̃ ( υ̃  *  ũ( )

which can be easily calculated using the methods developed in 2.B.e
provided that ~u and ~n are fuzzy numbers of L-R and R-L type, respec-
tively. Note that ~I ( ~u, ~n) Þ ~I (0, ~n) * ~I ( ~u, 0), which is

  

 
ã ( ν̃( )2

2
%  b ( ν̃












  *  

ã ( ũ( )2

2
 %  b̃ ( ũ













 

because of the nondistributivity of ( over * (see 2.B.d.ß.).



116

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

II.4.  Fuzzy Functions

D.   DIFFERENTIATION  (Dubois and Prade, 1978)

In the preceding section we have extended the concept of integration to
a real fuzzifying function (i.e., a mapping from R to ~3 ′(R)). Conversely,
differentiation is introduced here.

a.   Definition of the Extended Derivative

Let ~f be a fuzzifying function from R to R. The image of any x [ D # R

is assumed to be a fuzzy number (i.e., a convex and normalized fuzzy set in
R). Moreover, each a-level curve f

a
 of ~f is assumed to have a derivative at

any x
0

[ D. Then, the derivative of ~f at x
0
, denoted (d~f / dx)(x

0
) is defined

by its membership function

µ
d f̃ dx( ) x0( )

P( ) =    sup
  fα : d fα dx( ) x0( )=P

 µ f α( )  (14)

where m(f
a
) = a by definition. (m

(d~f / dx)(x)
(P) = 0 if /∃a, (df

a
/ dx)(x

0
) = P).

Thus the membership value of P to (d~f / dx)(x
0
) is the greatest level of all

the a-level curves whose slope at x
0
 is P. (d~f / dx)(x

0
) is an estimate of the

parallelism of the bundle of level curves at x
0
. The less fuzzy (d~f / dx)(x

0
),

the more parallel the level curves.

b.   L-R Type Fuzzifying Functions

Let ~f be such that ; x [ D, (~f(x) = (f(x), s(x), t(x))
LR

. If a Þ 1, there are
two a-level curves f

a
- and f

a
+ , whose equations are

           fα
– (x) = f(x) – L–1 (α) ⋅ s(x), fα

+ (x) = f(x) + R–1 (α) ⋅ t(x),

and f
1
(x) = f(x).

For the sake of simplicity, ~f(x) is assumed to be a strictly convex fuzzy
number (i.e., L and R are continuous and strictly decreasing on [0, +`),
and thus ; a Þ0, /∃ (a, b) with a Þ b, such that ; u [ [a, b], m

~f (x)
(u) = a).

Moreover, f, s, and t are assumed to have derivatives at any x [ D. Hence

df α
−

dx
 x0( )  =  

df

dx
 x0( )  −  L−1 α( )  

ds

dx
 x0( ),

df α
+

dx
 x0( )  =  

df

dx
 x0( )  +  R−1 α( )  

d t

dx
 x0( ).

According to the sign of (ds / dx) (x
0
) and (dt / dx)(x

0
), the bundle of a-level

curves may have different features.

(i) ( d s / d x) ( x
0
) > 0 , (d t / d x) ( x

0
) > 0 . I f ( d s / d x) ( x

0
) > 0 a n d

(dt / dx)(x
0
) > 0 (see Fig. 6), s(x) and t(x) are increasing functions
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Figure 6 Figure 7

in a neighborhood of x
0
; so when x increases, the a-level curves

get away from f(x) and we have, if ß < a < 1

dfβ
+

dx
 x0( ) > df α

+

dx
 x0( ) > df

dx
 x0( ) > df α

−

dx
 x0( ) >

dfβ
−

dx
 x0( ).

Given a slope P, there exists at most one level curve whose
derivative in x

0
 is equal to P. Hence, (14) gives

  

if  P ø 
df

dx
 x0( ),    µ

d f̃ dx( ) x
0

( )
P( ) = L

df dx( ) x0( ) − P

ds dx( ) x0( )











;

if  P ù 
df

dx
 x0( ),    µ

d f̃ dx( ) x
0

( )
P( ) = R

P− df dx( ) x0( )
d t dx( ) x0( )












;

and

df̃

dx
 x0( ) = df

dx
 x0( ),  ds

dx
 x0( ),  dt

dx
 x0( )





LR

.

(ii) ( ds / dx) (x
0
) < 0, (dt / dx)(x

0
) < 0. This is the opposite case. s(x)

and t(x) are decreasing functions in a neighborhood of x
0
, and if

β < a < 1 ((ds/ dx) (x
0
) < 0, (dt / dx)(x

0
) < 0),

d f
β

dx
 x0( ) > df α

−

dx
 x0( ) > df

dx
 x0( ) > df α

+

dx
 x0( ) >

dfβ
+

dx
 x0( ).

Similarly to (i), we get

df̃

dx
 x0( ) = df

dx
 x0( ),−  

dt

dx
 x0( ),−  

ds

dx
 x0( )





RL

.

(iii) ( ds / dx) (x
0
) < 0, (dt / dx)(x

0
) > 0.  Figure 7 sketches the shape of

the bundle in a neighborhood of x
0
. Here,

  
∀α ,   min

dfα
+

dx
x0( ),  df α

−

dx
 x0( )






 ù 

df

dx
 x0( ).

Thus, if P < (df / dx)(x
0
), then m

(d ~f / dx)(x0)
(P) = 0.  If P ù (df / dx)(x

0
),

there may be two level curves f
a
–, f

ß
+  whose derivatives at x

0
 are
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equal to P. Hence,

df̃

dx
x0( ) = df

dx
x0( ),0,  −  

ds

dx
x0( )





L

 ∪  
df

dx
x0( ),0,

dt

dx
x0( )





R

.

Usually, (d~f / dx)(x
0
) has no particular type (i.e., L or R).

(iv) (ds / dx)(x
0
) > 0; (dt / dx)(x

0
) < 0. A similar discussion would

lead to

df̃

dx
x0( ) = df

dx
x0( ), ds

dx
x0( ),0





L

 ∪  
df

dx
x0( ),  −  

dt

dx
x0( ),0





R

.

Remarks 1   It is clear that

  

df̃

dx
x0( ) ≠ lim

h→0

f̃ x0 + h( ) * f̃ x( )
h

=  
df

dx
x0( ),  + ∞,  + ∞





because even in an extended subtraction spreads must be added.

  

d

dx
f̃ % g̃( ) x0( ) = df̃

dx
x0( )% dg̃

dx
x0( )

if ds / dx, dt / dx, du / dx, dv / dx have the same sign at x
0
. It would be

possible to show that in some cases the usual formula for differentiation of
a product still holds for L-R type fuzzifying functions.

c.   Example

Let ~f(x) = e~l ( x where ~λ is a strictly convex continuous positive L-R
type fuzzy number. Then, (d~f / dx)(x) = ~l ( x e~l ( x since it is possible to
differentiate along the a-level curves: (df

a
/ dx)(x) = l

a
el a • x and to apply

the theorem of 2.B.a because uen• x is increasing with (u, n). But it is not
always so easy!

Remark   Integration and differentiation of a fuzzy bunch of functions. S.
S. L. Chang and Zadeh (1972) have defined the derivative and the integral
of a function with a fuzzy parameter (viewed as a fuzzy bunch of ordinary
functions) in the following way: Let x ° f(x, a) be a function from R to R

depending on a real parameter a. Its extension ~f when the parameter is a
fuzzy set A on R is defined by

µ
f̃ x, A( )

y( ) =  sup
a, y= f x, a( )

 µ A a( ).
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This fuzzifying function x ° ~f (x, A) can also be viewed as a fuzzy bunch
F = #m

A
(a) /f(•, a); in this latter approach the membership function of the

derivative and the integral are respectively

µ df̃

dx
 

x, A( ) y( )  = sup
a, y = 

df

dx
 x, a( )

µ A a( );

µ
x0

x f t, A( ) dt∫
y( )  =  sup

a, y = x0
x f t, A( ) dt∫

 µa a( ).

In the above example (c) the a-level curves are precisely the elements of
the support of the associated fuzzy bunch; thus the two approaches give
the same results.

E.   FUZZY TOPOLOGY

The notion of a fuzzy topological space was introduced by C. L. Chang
(1968). It is a straightforward extension of the concept of ordinary topolog-
ical space (i.e., a pair (X, 7) such that: (1) X, Ø [ 7; (2) A, B [ 7 implies
A

i
> B [ 7; (3) A

i
[ 7, ;i [ I  implies <

i [ I
A

i
[ 7 where 7 # 3 (X)). It is

beyond the scope of this book to present all the notions and results that
have been developed in fuzzy topology. Only some of the basic definitions
and propositions are given here. A rather extensive bibliography is listed at
the end of this chapter.

A fuzzy topology is a family ~7 of fuzzy sets on X satisfying the following
conditions: (1) X, Ø [ ~7; (2) if A, B [ ~7, then A > B [ ~7; (3) if ;

i
[ I,

A
i

[ ~7, then <
i [ I

 A
i

[ ~7. (Chang, 1968).
(X, ~7) is said to be a fuzzy topological space. Each member of ~7 is called a

~7-open fuzzy set. A fuzzy set is ~7-closed iff its complement is ~7-open. For
instance, (X, ~3 (X)) is a fuzzy topological space, namely the discrete fuzzy
topology of X.

A fuzzy set N [ ~7 is a neighborhood of A iff ' 0 [ ~7 such that A # 0
# N. A is open iff for each fuzzy set B contained in A, A is a neighbor-
hood of B. The above definition is somewhat different from the ordinary
one in that we do not consider here the neighborhood of a point but of a
fuzzy set.

Let A and B be fuzzy sets of ~7 such that A $ B. Then B is said interior
to A iff A is a neighborhood of B. The interior of A, denoted A°, is the
union of all interior fuzzy sets A.  A° is the largest open fuzzy set contained
in A.  A is open iff A = A°.

Let f be a function from X to Y. Let ~8 be a fuzzy topology on Y. The
inverse, denoted f–1(B), of a fuzzy set B in Y is a fuzzy set in X whose
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membership function is

; x [ X,   m
f-1 (B)

(x) = m
B
(f (x)).

f is said to be F-continuous iff the inverse of each ~8-open set is ~7-open.
Then, for each fuzzy set A in X, the inverse of every neighborhood of f (A)
is a neighborhood of A.

In the literature, several definitions of fuzzy compactness have been
proposed and investigated (see C. L. Chang, 1968; Christoph, 1977;
Goguen, 1973; Lowen, 1976, 1977; Wong, 1973, 1974a; Weiss, 1975;
Takahashi, 1978). Not all these definitions are equivalent. The interested
reader should consult the two comparative studies (in the sense of the
existence of a Tychonoff theorem) by Gantner et al. (1978) and by Lowen
(1978).

Local properties (Wong, 1974b) and normality (Hutton, 1975) have also
been studied. Katsaras and Liu (1977)’s fuzzy vector spaces are particu-
larly worth considering.

Questions such as, What does fuzzy continuity mean for an ordinary
function? or What is continuity for a fuzzifying function (A.c.a)? also seem
worth considering in the framework of topology.

F.   CATEGORIES OF FUZZY SETS

Category theory is a very general theory whose aim is “to lay bare some
of the underlying principles common to diverse fields in the mathematical
sciences." (Arbib and Manes, NF 1975). It has been used by several
authors (Goguen, 1969, 1974; Eytan, 1977; Negoita and Ralescu, 1975)
who tried to provide an abstract foundation to fuzzy set theory, indepen-
dent of ordinary set theory. This approach contrasts with Chapin’s (1.B.d).

A category K is a collection of objects denoted obj (K) together with, for
each pair (A, B) of objects, a collection of entities called morphisms. The
set of morphisms f between A and B is denoted K (A, B). We write
f: A → B. Morphisms f and g respectively in K (A, B) and K (B, C) can be
composed to make a unique morphism g ( f in K(A, C). Symbolically, we
write

and say that “the diagram commutes.” for K to be a category, the
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following properties must be satisfied:

the composition law of morphisms is associative;
; A ∈ obj (k), there is a unique morphism 1

A
∈ K (A,A) such that

; f : A → B,    f  1
A

= 1
A
   f = f;

1
A
 is called the identity morphism.

Example  An example is the category SET of sets. Morphisms are
mappings between sets.

A functor F is an assignment between two categories K and K′, mapping
objects onto objects and morphisms onto morphisms, and such that

Thus, a functor is a kind of homomorphism between categories.
Goguen (1969) introduced the first category of fuzzy sets, denoted

Set (L) where L is a complete lattice. Objects of Set (L) are L-fuzzy sets, i.e.,
pairs (X, m) where X is an ordinary set and m a function from X to L.
Morphisms are ordinary functions f : X → Y such that m ° f > x where
(X, m),(Y,x) are objects of set(L). Hence, morphisms are fuzzy functions
in the sense of A.a. > is the order relation induced from > that in L. This
category is also used in Eytan (1977). An extensive presentation of Set(L),
its properties, and its ability to represent concepts can be found in
Goguen's (1974) paper.

Other categories of fuzzy sets include: Set
f
(L), the category whose

objects are pairs (X, m), m: X → L and whose morphisms are fuzzy rela-
tions X 3 Y→ L such that

∀x [ X, ∀y [ Y, m
R
 (x, y) < inf( m(x), X(y))

with (X, m), (Y, x) [ obj (Set
f
(L)).

Set
f
(L) is thus the category of fuzzy sets and fuzzy relations in the sense of

N.B.2 in A.c.a.
There exists also Set

g
(L), which has the same definition as Set

f
(L)

except the condition for fuzzy relations; for Set
g
(L),

  
sup
x∈x

 inf  µR x, y( ),µ  x( )( )  ≤  x  y( )       ∀ y ∈Y.

A discussion of Set
f
(L) and Set

g
(L) can be found in Negoita and Ralescu

(1975); two functors between Set(L) and Set
f
(L), and between Set

f
(L) and

Set
g
(L) respectively are constructed.

  

∀ f ∈K A,  B( ),     F f( ) ∈K' F A( ),  F B( )( );
∀ f : A → B,     g :  B → C,   F g( f( )  =  F g( )  (F f( );
∀ A ∈ obj  K( ),     F 1A( )  =  1 F( ) A.
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Different from the categories of fuzzy sets are the fuzzy categories that
are extended categories as fuzzy sets are extended sets. Two points of view
exist. Given a category K, we build ~ K̃  over K such that

obj( K̃ ) = obj(K).

;A, B [ obj ( K̃ ), a morphism of K̃  is an L-fuzzy set of K(A, B) (see
Negoita and Ralescu, 1975). It can be proved that K̃  is a category. When
K = SET, the morphisms of ̃K  are nothing but fuzzy bunches (A.c.b).

A fuzzy theory (Arbib and Manes, Reference from III.2, 1975b) is a
triple ^ = {F, o, i} where F is a function from obj(K) to obj(K), o is a
function K(A, F(B)) 3 K(B, F(C)) → (K(A, F(C)), and i a collection of
morphisms A→ F(A), A [ obj (K). It is possible to equip ̂ with properties
such that there is a category ^(K) with obj (̂ (K)) = obj (K), ^.K) (A, B)
= K(A, F(B)) ;A,B in obj (K). When K = SET and F(X) = ~ 3(X), the
morphisms of ̂ (K) are fuzzifying functions.

The role played by the interval [0, 1] in the definition of fuzzy concepts is
discussed under the name “fuzzy characters” in a categorical framework
by Negoita and Ralescu (1975). The latter author also recently studied a
fuzzy generalization of the notion of subobject in a category (Ralescu,
1978).

Lastly, we must mention a completely different group of works which
use category theory terminology but are not related to Goguen's approach.

Poston (1971) defines a category called “Fuz” whose objects are sets
equipped with a nonfuzzy proximity relation. Dodson (1974, 1975) general-
izes Fuz by considering sets X with a nonfuzzy proximity relation on
X × 3(X), called hazy spaces. Both authors are motivated by an extension
of the usual topology (not in the sense of E) and differential geometry to
spaces were usual distances no longer exist. According to Dodson (1974)
“the situation in Fuz [and in hazy spaces] resembles that in real experi-
ments: making measurements with limited precision.” Dodson (1975)
indicates with an example how hazy spaces are a good tool for modeling
the notion of an elementary particle, in accordance with an uncertainty
principle similar to Heisenberg’s.
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Chapter 5
FUZZY MEASURES.
PROBABILITIES/
POSSIBILITIES

Whereas the four previous chapters were devoted to sets, we are con-
cerned here with measures of sets. Instead of considering membership
grades, we now deal with degrees of belief, possibility, probability that a
given unlocated element belongs to a (fuzzy or nonfuzzy) set.

The first section presents Sugeno’s fuzzy measures and integral. Fuzzy
measures assume only monotonicity and thus are very general. Probability
and possibility measures, Shafer’s belief functions, and Shackle’s conso-
nant belief functions are shown to be particular cases of fuzzy measures.
Fuzzy integrals in the sense of Sugeno are analogous to Lebesgue integrals.
A result on conditional fuzzy measures is reminiscent of Bayes’ theorem.

In Section B basic notions of a theory of possibility, following Zadeh,
are provided. Similarities between possibility and probability theory are
emphasized. A possibility distribution can be induced from a fuzzy set and
does not underlie the idea of a replicated experiment, nor does a possibility
measure satisfy the additivity property.

The next section deals with fuzzy events modeled as fuzzy sets and with
their fuzzy or nonfuzzy probability and possibility. Lastly, fuzzy distribu-
tions of probability and possibility are briefly investigated.

A.   FUZZY MEASURES AND SUGENO’S INTEGRALS

In the four preceding chapters we were interested in the grade of
membership µ

A
(x) of a known element x [ X in a set A without precise

boundary.
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On the contrary, we are now concerned with guessing (most often
subjectively) whether an a priori nonlocated element in X belongs to a
subset A of X. A is fuzzy or not here. Such an uncertainty is sometimes
conveniently expressed using probabilities.

Sugeno’s approach (see Sugeno, 1974, 1977; Terano and Sugeno, 1975),
which is the topic of this section, generalizes probability measures by
dropping the additivity property and replacing it by a weaker one, i.e.,
monotonicity.

a.   Fuzzy Measures

Note: In this section a we consider only nonfuzzy subsets.

Let g be a function from 3(X) to [0, 1]. g is said to be a fuzzy measure
iff:

(1) g(Ø) = 0; g(X) = 1;
(2) ;A, B [ 3(X), if A # B, then g(A) < g(B) (monotonicity).
(3) if ;i [ N, A

i
[ 3(X) and (A

i
)

i
 is monotonic (A

1
# A

2
# … # A

n

# … or A
1

$ A
2

$ … $ A
n
…), then

lim
i→∞

g(A
i
) = g_ lim

i→∞
A

i
+ (continuity).

N.B.:  More generally, a fuzzy measure can be defined on a Borel field
@ , 3(X), i.e., (1) Ø[ @; (2) if A [ @, then A [ @; (3) if ;i [ N,
A

i
[ @, then <i[N

A
i
[ @.

g is associated with a nonlocated element x of X. g(A) is called by
Sugeno a “grade of fuzziness” of A. It expresses an evaluation of the
statement “x belongs to A” in a situation in which one subjectively guesses
whether x is within A. The monotonicity of g means that “x [ A” is less
certain than “x [ B” when A # B. It is easy to check that

;A, B [ 3(X), g(A < B) r max(g(A), g(B))

and
;A, B [ 3(X), g(A > B) < min(g(A), g(B)).

Several examples of fuzzy measures are provided.

α. Probability Measures

P is a probability measure iff:
(1) ;A, P(A) [ [0, 1]; P(X) = 1;
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(2) if ;i [ N, A
i
[ 3(X) and ;i Þ j A

i
> A

j
= Ø, then

    P U
i∈N

Ai




 = P Ai( )

i=1

∞
∑ .

P is obviously a fuzzy measure.

β. Dirac Measures

A Dirac measure is a fuzzy measure µ defined by

;A [ 3(X), µ(A) =
  

1   iff   x0  [ A,

0   otherwise,




where x
0
 is a given element in X. m is nothing but the membership value of

x
0
 in any subset of X.

γ. l-Fuzzy Measures

gλ fuzzy measures were proposed by Sugeno (1974) by relaxing the
additivity property of probabilities into: ;A, B [ 3(X), such that A > B
= Ø,

gλ(A < B) = gλ(A) + gλ(B) + lgλ(A) gλ(B),          –1, l. (1)

where gλ(X) = 1 and gλ satisfies the continuity property of fuzzy measures.

l-fuzzy measures are indeed fuzzy measures for l . –1.

Proof: From (1) we have

gλ(X) = gλ(X) + gλ(Ø)(1 + lgλ(X))

Hence, since l ± –1, gλ(Ø) = 0. If A # B, then 'C, B = A< C and A > C
= Ø. We have

gλ(B) = gλ(A) + gλ(C)(1 + lgλ(A)) > gλ(A)

since l . –1. Q.E.D.

N.B.: For l = 0, l-fuzzy measures are probability measures. Taking
B = A, we get from (1)

gλ( A ) =
1 − gλ A( )

1 + λ gλ A( )
This expression is exactly the same as the l-complement formula in l.B.b.

More generally, when A and B are any subsets of X, the following
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formula holds:

g
l
(A < B) =

gλ A( ) + gλ B( ) − gλ A ∩ B( ) + λ ⋅ gλ A( ) ⋅ gλ B( )
1+ λ ⋅ gλ A ∩ B( ) ,

which is easy to prove, expressing g
l
(A < B) in terms of g

l
(A) and

g
l
( A > B), expressing g

l
(B) in terms of g

l
( A > B) and g

l
(A > B), and

eliminating g
l
( A  > B) from the two expressions.

If X = R, a l-fuzzy measure is easily obtained from a function h such
that (1) if x < y, then h(x) < h(y); (2) h is continuous; (3) lim

x→–∞ h(x)
= 0; (4) lim

x→+∞ h(x) = 1. h is very similar to a probability cumulative
distribution function and we have (Sugeno, 1977):

;[a, b] , R,   g
l
([a, b]) =

h b( ) − h a( )
1 + λ h a( )

If we iterate (1) using a family of disjoint subsets A
i
, we get

    gλ U
i ∈N

Ai




 = gλ Ai( )

i = 1

∞
∑ ,       λ = 0

= 1
λ

1+ λ gλ Ai( )( ) −1
i = 1

∞
∏














,      λ ≠ 0.

When X is a finite set {x
1
, . . . , x

n
}, a fuzzy measure g

l
 is obtained from

the values g
i
= g

l
({ X

i
}) [ [0, 1] using the above formula, provided that the

g
i
 satisfy the normalization constraint

gλ X( ) = 1
λ

1+ λ gi( ) −1
i = 1

n

∏












= 1.

d.   Belief Functions   (Shafer, NF 1976)

A belief function b is a measure on X finite, such that

(1) b(Ø) = 0, b(X) = 1; ;A [ 3(X), 0 < b(A) < 1;
(2) ;A

1
, A

2
, … , A

n
[ 3(X),

  b A1∪ A2 ∪  L ∪ An( ) >   b Ai( )
i = 1

n

∑ − b Ai ∩ Aj( )
i < j
∑ +  L

+ (–1)n+1b(A
1

∩ A
2

∪ ••• ∩ A
n
)

b(A) is interpreted as a grade of belief that a given element of X belongs to
A. Note that b(A) + b( A ) < 1, which means that a lack of belief in x [ A
does not imply a strong belief in x [ A . Particularly, a total ignorance is
modeled by the belief function b

i
 such that b

i
(A) = 0 if A Þ X and
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b
i
(A) = 1 if A = X. A probability measure is a special case of belief

functions. Belief functions are fuzzy measures. Let B # A, hence 'C,
A = B < C and B > C = Ø. (2) becomes b(A) = b(B < C) > b(B) +
b(C) > b(B).

Belief functions can be defined by a so-called basic probability function
m from 3(X) to [0, 1] such that: (1)m (Ø) = 0; (2) S

A[3(X)
m(A) = 1 (the

total belief has a measure 1). It is easy to show that S
A # B

m(A) is a belief
function b(B). Conversely, for any belief function b, S

B # A
(–1)|A-B|b(B)

is a basic probability function m(A). The subsets A of X such m(A) > 0
are called focal elements of b. “m(A) measures the belief that one commits
exactly to A, not the total belief that one commits to A” (Shafer, NF 1976).

A l-fuzzy measure is a belief function iff l > 0.

Proof: (Banon 1978)
Let A be a subset of X finite. Developing the expression of g

l
(A) in

terms of g
i
’s yields

gλ A( ) = λ B −1

B⊆A
∑ ⋅ gi .

xi∈B
∏

We may state m(B) = l|B | –1?P
xi [ B

g
i
 iff l > 0.

Moreover, S
B#X

(B) = 1 due to the normalization constraint on the
g

i
’s. Q.E.D.

However, belief functions are more general than l-fuzzy measures for
l > 0; knowledge of b(A) and b(B) is not always sufficient to calculate
b(A < B). Moreover, b

i
 is not a l-fuzzy measure.

e.  Consonant Belief Functions   (Shackle, NF 1961, Cohen NF 1973)

A consonant belief function is a belief function whose focal elements
A

1
, … , A

n
 are nested: A

1
, A

2
, ••• ,A

n
. In particular, b

i
 is a conso-

nant belief function.
A consonant belief function is a l-fuzzy measure iff it is a Dirac

measure (Banon, 1978).
Shafer (NF 1976) showed that the above definition of a consonant belief

function was equivalent to:

(1) b(\) = 0; b(X) = 1;
(2) b(A > B) = min(b(A), b(B)).

This latter definition was independently introduced by Shackle (NF 1961).
Other properties of consonant belief functions are: ;A, min(b(A),b( A ))

= 0; ;b, 'A, B, b(A < B) > max(b(A), b(B)), except if b is a Dirac mea-
sure. The first equality means that a positive grade of membership is never
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granted to both sides of a dichotomy at the same time. b( A ) is interpreted
by Shackle as a potential grade of surprise.

Particular cases of consonant belief functions are certainty measures such
that

'Y
0
 # X,   c(A) = 1 if A $ Y

0
, and 0 otherwise.

z. Plausibility Measures
The plausibility of a subset A of X (finite) has been defined by Shafer

(NF 1976) as

Pl(A) = 1 – b( A ) (2)
where b is a belief function.

A plausibility measure satisfies the following axioms:

(1) Pl(Ø) = 0; Pl(X) = 1.
(2) ;A

1
, . . . , A

n
 # X,

  Pl A1∩  L ∩ An( ) ≤ Pl Ai( ) − Pl Ai ∪ Aj( ) +  L
i< j
∑

i=1, n
∑

  + −1( )n+1 Pl A1∪  L ∪ An( ).
Plausibility measures are particular cases of fuzzy measures.

Proof: Noticing that ;A # X, ;B # X, Pl(A < B) < Pl(A) +
Pl(B) – Pl(A > B), let C # A and B = C < A , hence A < B = X, A > B
= C, and 1< Pl(A) + Pl (B) – Pl(C); since Pl(B) = 1, Pl(A) > Pl(C).
Q.E.D.

Moreover, Pl(A) + Pl(A) > 1.

N.B.: Plausibility measures and belief functions have been introduced
by Dempster (NF 1967) under the names upper and lower probabilities,
induced from a probability measure by a multivalued mapping.

A l-fuzzy measure is a plausibility measure iff –1 < l < 0.

Proof: Let g
l
 be a l-fuzzy measure with –1 <l < 0. Denote f(A)

= 1 – g
l
( A ). Expressing for any A and B f(A < B) = 1 – g

l
(A < B) in

terms of g
l
( A ), g

l
(B) and g

l
(A > B), owing to the l-complementation

formula, shows that f is nothing but g
m
 with m = –l/(l + l).

Note that the function l ∞ – l/(1 + l) is an involutive bijection from
] – 1, 0] to [0, +`).

Thus, due to the definition of the plausibility measures in terms of belief
functions and to the fact that g

l
 is a belief function iff l > 0, the

proposition holds. Q.E.D.
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In terms of basic probability functions, we have

∀ A ⊆ X,    Pl A( ) = m B( )
A∩B≠Ø
∑

h.   Possibility Measures Zadeh, 1978)
A possibility measure P is a function from 3(X) to [0, 1] such that
(1) P(Ø) = 0; P(X) = 1;
(2) For any collection {A

i
} of subsets of X, P(  U i

A
i
) = sup

i
P(A

i
).

A possibility measure can be built from a possibility distribution, i.e., a
function p from X to [0, 1] such that sup

x[X
p(x) = 1 (normalization

condition). More specifically, we have

∀ A,    ∏ A( ) = sup
x∈A

π x( ) (3)

Finding the associated possibility distribution from the knowledge of P
can be achieved by stating p(x) = P({ x}), at least for denumerable uni-
verses X.

The following propositions are due to Banon (1978):
• A possibility measure is a belief function iff it is a Dirac measure.
• A possibility measure is a l-fuzzy measure iff it is a Dirac measure.

Note also that ;P, 'A,B, P(A > B) < min(P(A),P(B)) except if P is
a Dirac measure.

Lastly, it is easy to check that a possibility measure on X finite is a
plausibility measure.

N.B.: 1. Some authors prefer in some contexts non-normalized possi-
bility measures, i.e. P(X) < 1. Viewing p as a membership function, the
interpretation of such measures is closely related to that of non-normalized
fuzzy sets (see 2.B.f.).

N.B.: 2. Let g be a function from 3(X) to [0, 1] such that

(1) g(Ø) = 0; g(X) = 1;
(2) ;A # X, ;B # X, if A > B = Ø then g(A < B) = max(g(A),

g(B)).

When X is finite, g is a possibility measure.

Proof: If A # C, 'B, such that A > B = Ø and A < B = C. Hence,
g(C) = max(g(A), g(B)) > g(A), i.e., g is a fuzzy measure.

;A # X,   ;B # X,   g(A < B) = max(g(A), g( A > B))

g(B) = max(g(A > B), g( A > B)).



132II.5.  Fuzzy Measures

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

Hence,
max(g(A < B), g(A > B))  = max(max(g(A), g( A > B)), g(A > B))

= max(g(A), g(B))

But since g is a fuzzy measure, g(A > B) < g(A < B).   Q.E.D.

N.B.: 3. P
m
(A) = 1 – b

i
(A), (i.e., P

m
(A) = 1 iff A ≠ Ø) is called

maximum possibility measure.

N.B.: 4. Crisp possibility measures are defined by

'Y
0
 # X,  cP(A) = 1 if A > Y

0
 ≠ Ø, and cP(A) = 0 otherwise.

Note that cP(A) = 1 – c( A ), where c is a certainty measure.

Remark A consonant belief function b can be built from a possibility
measure and reciprocally by setting

P(A) = 1 –b( A ).
Hence

b A( ) = 1− sup
x∉A

π x( ) = inf
x∉A

1− π x( )( ) = inf
x∉A

 v x( ). (4)

By analogy with modal logic where “A is necessary” is equivalent to
“non-A is not possible” (hA ; ¬ e ¬ A), we could interpret a consonant
belief function as a necessity measure.

Fig. 1 pictures the inclusion relationships that exist between the various
sets of fuzzy measures on finite sets.

Figure 1
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b. Sugeno's Fuzzy Integral

a. Nonfuzzy Domain

Using fuzzy measures Sugeno (1974) defined fuzzy integrals that are
very similar to Lebesgue integrals. Let h be a function from X to [0, 1]. The
fuzzy integral over the non fuzzy set A # X of the function h with respect
to a fuzzy measure g is defined as

)
A
h(x) + g(?) =   sup

α∈ 0,1[ ]
min α ,  g AI Hα( )[ ] (5)

where H
a

= {x, h(x) > a}.
N.B.: The analogy of (5) with a Lebesgue integral can be clearly

exhibited as follows (Sugeno, 1974). Let (E
1
, . . . ,E

n
) be an ordinary

partition of X and assume

h x( ) = α iµEi
x( )

i=1

n

∑
where m

Ei
 is the crisp characteristic function of E

i
. Let l be a Lebesgue

measure on (X, 3(X)). The Lebesgue integral of h over A is

  h dl = α i l
i=1

n

∑
A∫ AI Ei( ).

Now assume 0< a
1

< ••• < a
n

< 1. Let F
i
= <n

j = i
E

j
. Then, defining

h(x) = max
i = 1,n

min(a, m
Fi
(x)):

)
A
h(x) + g(?) =   max

i=1, n
 min α i ,  g AI Fi( )( ).

We give here some of the properties of the fuzzy integral:

? )
X
a + g(?) = a ;a [ [0, 1];

? if ;x, h(x) < h′(x), then )
X

h(x) + g(·) < )
X

h′(x) + g(·) (monotonic-
ity);

? g(A) =)
X

m
A
(x) + g(·) where A [ 3(X);

? let M =)
X

h(x) + g(·) and

  

′h x( ) =
M,     ∀ x ∈HM = x,h x( )> M{ }
h x( )      otherwise,






then )

A
h′(x) + g(·) =)

A
h(x) + g(·);

? if A # B, then )
A

h(x) + g(·) <)
A

h(x) + g(·);
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let P be a probability measure on X, then

    )X h x( )  o  P ⋅( ) − h x( )dP
X∫ <

1
4

.

These properties are proved in Sugeno (1974).

Kandel (1978a) proved the following result, when g is continuous

)
A
h(x) + g(·) =   inf

α∈ 0,1[ ]
max α ,  g AI Hα( )[ ],

by noting that g(A > H
a
) is a nonincreasing function of a. When X is

finite, this result no longer holds.
Assume X = {x

1
, . . . , x

n
} and h(x

1
) < ⋅ ⋅ ⋅ < h(x

n
), then we have  )X h x( )  o  g ⋅( ) = max

i = 1, n
 min h xi( ),  g Hi( )( )

where H
i
= (x

i
, x

i + l
, . . . ,x

n
). Let i

0
 be such that )

X
h(x) + g(·) =

min(h(x
i0
), g(H

i0
)) = M. Note that the n – 1 following terms are less than

or equal to M: { g(H
i
), i > i

0
} and {h(x

i
), i < i

0
}. There are n – 1 other

terms that are greater than or equal to M: { g(H
i
), i < i

0
} and {h(x

i
), i

> i
0
}. Moreover g(H

1
) = 1. So M is obviously the median of the set of

2n– 1 terms {h(x
i
), i = 1, n} < { g(H

i
), i = 2, n},  once this set has been

ordered. Thus, as indicated by Kandel (1978a, b), Sugeno’s fuzzy integral
can be interpreted as a “weighted median.”

b.   Fuzzy Domain

Let A be a fuzzy set on X, the fuzzy integral of a function h from X to
[0, 1] over A with respect to g is  )A h x( )  o  g ⋅( ) =)X min µ A x( ),h x( )( )  o  g ⋅( ). (6)

The following properties hold:    ∀ A, B,   )AU B h x( )  o  g ⋅( ) > max )A h x( )  o  g ⋅( ),)B h x( )  o  g ⋅( )





    )AI B h x( )  o  g ⋅( ) < min )A h x( )  o  g ⋅( ),)B h x( )  o  g ⋅( )



 ;

it is easy to see that (6) gives (5) when A is nonfuzzy;
the fuzzy measure of a fuzzy set A is    g A( ) =)X µ A x( )  o  g ⋅( )    where    A ∈3̃ X( ).

In particular, possibility measures of fuzzy sets can thus be defined.
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c. Conditional Fuzzy Measure

One may think that the notion of conditional fuzzy measure is to that of
fuzzy relation what the concept of fuzzy measure is to that of fuzzy set.
Moreover, it generalizes conditional probabilities.

Let X and Y be two universes. A conditional fuzzy measure on Y with
respect to X is a fuzzy measure s

Y
(· ) x) on Y for any fixed x [ X. A fuzzy

measure g
Y
 on Y is induced by s

Y
(· ) x) and a fuzzy measure g

x
 as follows,

for B nonfuzzy,     gY B( ) =)X σY B x( )  o  g ⋅( )    ∀ B ∈3 Y( ). (7)

g
x
 corresponds to an a priori probability and s

Y
(· ) x) to a conditional

probability. For this reason, g
X
 may be called an a priori fuzzy measure.

s
Y
(B ) x) measures the grade of fuzziness of the statement, “One of the

elements of B results because of x.” In some applications s
Y
(· ) x) models

subjectivity, which modifies the information g
X
.

The fuzzy integral of a function h from Y to [0, 1] with respect to g
Y
 will

be (shown in Sugeno, 1974)  )B h y( )  o  gY ⋅( ) =)B h y( )  o  )X σY ⋅  x( )  o  gX ⋅( )



  =)X )X h y( )  o  σY ⋅  x( )





 o  gX ⋅( ).
When h is interpreted as a membership function m

B
 of a fuzzy set B in Y,

g
Y
(B) is calculated using the above formula as

g
Y
(B) =)

X
s

Y
(B ) x) + g

X
(·)

with

s
Y
(B ) x) = )

Y
m

B
(y) + s

Y
(· ) x).

Similarly to (7) we can consider

g′
X
(A) = )

Y
s

X
 (A ) y) + g

Y
(·)       ;A [ 3(X).

If we can choose s
X
(· ) y) such that g′

X
= g

X
, then Sugeno (1974) has

shown that s
X
(· ) y) and s

Y
(· ) x) were linked by

)
B
s

X
(A ) y) + g

Y
(·) =)

A
s

Y
(B ) x) + g

X
(·). (8)

This result is similar to Bayes’s theorem. Using this identity and knowing
for instance g

X
 and s

Y
(· ) x), hence g

Y
, we can infer s

X
(· ) y), with
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B = { y}. s
X
(· ) y) is not always uniquely determined. A possible interpre-

tation of this model is that subjective incomplete information g
X
 may be

improved to s
X
 by extra information s

Y
.

Remark An extension of Sugeno’s fuzzy integrals to evaluate fuzzy
measures of L-fuzzy sets or F-fuzzy sets could be carried out.

B. POSSIBILITY AND PROBABILITY

This section is devoted to a comparison between possibility and proba-
bility. Similar quantities can be evaluated for each kind of measure. An
analogue of Bayesian inference for possibility exists. Possibility distribu-
tions and probability distributions are loosely related through a consis-
tency principle.

a.   Possibility and Fuzzy Sets (Zadeh, 1978)

Let A be a nonfuzzy set of X and ν a variable on X. To say that y takes
its value in A indicates that any element in A could possibly be a value of n
and that any element not in A cannot be a value of n. The statement “n
takes its value in A” can be viewed as inducing a possibility distribution p
over X associating with each element x the possibility that x is a value of
n:

ν = x( )∏ = π x( ) =
1 if  x ∈A,

0 otherwise.




Next, assume A is a fuzzy set that acts as a fuzzy restriction on the possible
value of n see 3.A.a). An extension of our above interpretation is that A
induces a possibility distribution that is equal to m

A
 on the values of n:

ν = x( )∏ = π x( ) = µ A x( )
Since the expression of a possibility distribution can be viewed as a

fuzzy set, possibility distributions may be manipulated by the combination
rules of fuzzy sets, and more particular of fuzzy restrictions.

N.B.: 1. Note that although a fuzzy set and a possibility distribution
have a common mathematical expression, the underlying concepts are
different. A fuzzy set A can be viewed as a fuzzy value that we assign to a
variable. Viewed as a possibility restriction A is the fuzzy set of nonfuzzy
values that can possibly be assigned to n.

Example In a nonfuzzy case (Zadeh, Reference from IV.2, 1977b),
consider the variable sister (Dedre) to which we assign a set or a possibility
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distribution, setting
sisters(Dedre) = {Sue, Jane, Lorraine} (set);

sister(Dedre) [ {Sue, Jane, Lorraine} (possibility distribution).
N.B.: 2. The meaning of p entails: “it is impossible that n belongs to

the complement of supp A in X.” That is, “it is necessary that n belongs to
supp A” because we suppose that we are sure that n takes its values on X
and only on X. However, n can be any element of A with a given
possibility. p does not model “it is possible that n belongs to supp A” but
“each element of supp A and only of supp A is a possible value for n.”

b.   Possibility of a Nonfuzzy Event

Let p be a possibility distribution induced by a fuzzy set F in X. Let A a
nonfuzzy set of X; the possibility that x belongs to A is P(A) where P is
the possibility measure induced by p, and we have (see A.a.z)

A( ) = sup
x∈A

∏  µF x( ) = sup
x∈A

 π x( ). (9)

As pointed out by Nguyen (1977c), P(A) is generally a Choquet (NF 1953)
strong precapacity.

Similarly, if p is a probability distribution over X, the probability that x
belongs to A is

  

P A( ) = dP
A∫ =

p x( )dx
A∫ if   X = R

p x( )
x∈A
∑ if   X is  finite.









Note that in (9) sup acts as a Lebesgue integral. Indeed, it is a fuzzy
integral in the sense of Sugeno:

P(A) =)
X
m

A
(x) + P(·).

Moreover, ;A, B [ 3(X), P(A < B) = max(P(A),P(B)), which corre-
sponds to P(A < B) = P(A) + P(B) when A > B = Ø.

“Intuitively, possibility relates to our perception of the degree of feasibil-
ity or ease of attainment whereas probability is associated with a degree of
likelihood, belief, frequency or proportion” (Zadeh, Reference from IV.2,
1977b).

c.   Consistency Principle

As pointed out by Zadeh (1978), it seems quite natural to think that
“what is possible may not be probable and what is improbable need not to
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be impossible.” Proceeding further, we may state that what is probable is
certainly possible and what is inevitable (necessary) is certainly probable.
This informal principle may be translated as: the degree of possibility of
an event is greater than or equal to its degree of probability, which must be
itself greater than or equal to its degree of necessity. To calculate a degree
of necessity we may think of using a consonant belief measure as hinted by
eq. (4). A consequence of the above principle would be that P(X) = 1 as
soon as P(X) = 1, which is usually taken for granted. This means that the
possibility distribution should be normalized, i.e., sup

x[X
p(x) = 1. Hägg

(Reference from IV.3) suggests the use of a nonnormalized probability
distribution, and P(X) < 1 is assumed to be equal to the rate of possibility
of X, i.e., P(X) = P(X). 1 –P(X) is interpreted as the probability of
occurrence of an event outside the universe X.

d. Conditional Possibilities

Let X and Y be two universes, and u, v two variables. Let p
(u, v)

(x, y) be
a possibility distribution associated with (u, v). p

u
(x) and p

v
(y) respectively

denote the projection of p
(u, v)

(x, y) on X and Y:

πu x( ) = sup
y

π u,v( ) x,y( ); πv y( ) = sup
x

π u,v( ) x,y( ).

p
u
(x) and p

v
(y) are said to be marginal possibility distributions. Recall that

the separability of p
(u, v)

(x, y) means that

p
(u, v)

(x, y) = min(p
u
(x), p

v
(y)).

Note that the following formula always holds:

πu x( ) = sup
y

min π u,v( ) x, y( ), πv y( )( ). (10)

When p
(u, v)

(x, y) is separable, it becomes

πu x( ) = sup
y

min πu x( ), πv y( )( ).
p

(u, v)
(x, y) can be interpreted as a conditional possibility distribution.

Let us investigate the relationship between (10) and Sugeno’s fuzzy
integral.

The fuzzy integral of a function h from X to [0, 1] over a nonfuzzy
domain D with respect to a possibility measure P is

  I =)D h x( )  o  ⋅( )∏ = sup
α∈0, 1[ ]

min α , sup
x∈DI Hα

π x( )
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where H
a

= {x, h(x) > a}. Let us transform I:

  

I = sup
α∈0, 1[ ]

sup
x∈DI Hα

min α , π x( )[ ] = sup
α∈0, 1[ ]

x∈D

min α , µHα x( ), π x( )( )

I = sup
x∈D

min π x( ), sup
α∈0, 1[ ]

α , µHα x( )( )



 = sup

x∈D
min π x( ), h x( )( ). (11)

Hence, I is the degree of consistency of p and h.
Now let us prove that

 
  

A( ) =u∏ )Y A,  y( )u, v( )∏  o  ⋅( )v∏
where P

(u, v)
(A, y) = sup

x[A
p

(u, v)
(x, y); P

u
(A) = sup

x[A
p

u
(x).

Proof: Using (11), the right-hand side is equal to

sup
y∈Y

min sup
x∈A

π u, v( ) x, y( ), πv y( )( ) = sup
x∈A

 sup
y∈Y

 π u, v( ) x,  y( ) = A( )u∏ .

For A = {x}, we recover (10), which thus proves to be a particular case of
(7). Q.E.D.

The analogy between conditional possibilities and conditional probabili-
ties was developed by Nguyen (1977b), who introduced the notion of a
“normalized” conditional possibility distribution. Denote such a distribu-
tion by p (x * y). p (x * y) is assumed to be expressed as

p (x * y) = p
(u, v)

(x, y) · a(p
u
(x), p

v
(y))

where a(· , ·) is a normalization function. a is determined from two
requirements:

(i) p (x * y) [ [0, 1];
(ii) min(p

u
(x), p

v
(y)) · a(p

u
(x), p

v
(y)) = p

u
(x).

(ii) means that when p
(u, v)

(x, y) is separable, the normalized conditional
possibility distribution equals the projection p

u
(x). This situation is similar

to that of a conditional probability P(E * F), which equals P(E) if E and F
are independent (P(E > F) = P(E)P(F)). Hence the notion of noninter-
activity for possibilities may play the same role as independence for
probabilities.

(i) and (ii) lead to the expression

π x y( ) =
π u,v( ) x, y( ) if    πu x( ) ≤ πv y( ),

π u,v( ) x, y( ) πu x( )
πv y( ) if    πu x( ) > πv y( ).









(12)
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Nguyen [7] showed that

p
u
(X) = sup

y
  min(p(x * y), p

v
(y)).

Moreover, we can state this equality together with (10) for possibility
measures:

A( ) = sup
y

u∏  min A, y( ), πv y( )u, v( )∏( )

= sup
y

 min A y( ), πv y( )u, v( )∏( )
where P(A * y) = sup

x[A
p(x * y).

This equality is similar to P(E) = S
y[Y

P(E * y)p(y) (Y finite) in prob-
ability theory.

Lastly, formula (8) can be written for possibilities:
;A [ 3(X),   ;B [ 3(Y)

)
B
P

(u, y)
(A, y) + P

v
(·) =)

A
P

(u, y)
(x, B) + P

u
(·). (13)

Proof:

   )B A,  y( )u, υ( )∏  o  ⋅( )v∏ = sup
y∈B

 min πυ y( ), A,  y( )u, υ( )∏( )

= sup
y∈B

 min πυ y( ),sup
x∈A

π u, υ( ) x,  y( )( )
= sup

x∈A
y∈B

 min πυ y( ),π u, υ( ) x,  y( )( )
= sup

x∈A
y∈B

 π u, υ( ) x,  y( ) = A,  B( )u, υ( )∏

because p
y
(y) = sup

x
p

(u, y)
(x, y) > p

(u, y)
(x, y), ;y. Obviously, the right-

hand side of (13) gives the same result. Q.E.D.
(13) can be viewed as a Bayes theorem for possibilities; P

(u, y)
(A, B) is

similar to P(A > B) in probabilities.
Other considerations on conditional possibility distributions have been

recently developed by Hisdal (1978).

C.   FUZZY EVENTS

Events are often ill defined. The question of the probability, of the
possibility of such fuzzy events may arise. For instance, What is the
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probability/possibility of a warm day tomorrow? The extension of proba-
bility theory in order to deal with fuzzy events was introduced by Zadeh
(1968), who considered nonfuzzy probabilities of fuzzy events. However,
fuzzy probabilities of the same fuzzy events can also be defined. Both
points of view can also be applied to possibility calculus.

a.   Nonfuzzy Probability/Possibility of a Fuzzy Event

We shall assume for simplicity that X is the Euclidian n-space Rn. Let @
be a Borel field in Rn and P a probability measure on @. A fuzzy event in
Rn is a fuzzy set A on Rn whose membership function is measurable. The
probability of a fuzzy event A is defined by the Lebesgue-Stielbes integral

P(A) = E
RnmA

(x)dP.   (14)

Note that when A is nonfuzzy, we obtain the usual probability of A. The
probability of a fuzzy event is the expectation of its membership function.

P(A) evaluates the degree with which the sample set Rn has the fuzzy
property A. The corresponding experiment is a random selection of ele-
ments x

i
 more or less belonging to A. At each trial a membership value

m
A
(x

i
) is provided. P(A) is

lim
m→∞

 

µ A xi( )
i=1

m

∑
m

where m is the number of trials. Thus, P(A) can be interpreted as a
proportion of elements of Rn “belonging” to A.

It is easy to see that ;A, B[ ~3(Rn) (m
A
, m

B
 measurable), if A # B, then

P( A) < P( B) , P (A + B) = P (A ) + P ( B) – P(A · B ) , a n d P( A < B ) =
P(A) + P(B) – P(A > B).

Two fuzzy events A and B are independent iff P(A · B) = P(A)P(B). An
immediate consequence of the above definition is the following. Let
X

1
= Rm, X

2
= Rp, and P be the product measure P

1
3 P

2
 where P

l
 and P

2

are probability measures on X
1
 and X

2
, respectively. Let A

1
 and A

2
 be

events in X
1
 and X

2
 characterized by the membership functions m

A1
(x1, x2)

= m
A1

(x1) and m
A1

(x1, x2) = m
A2

(x2) respectively. Then A
1
 and A

2
 are inde-

pendent events. This would not be true if independence were defined in
terms of P(A > B) rather than P(A · B) (Zadeh, 1968).

The conditional probability of a fuzzy event A given B is then defined
by P(A * B) = P(A · B)@P(B) provided P(B) > 0. Note that if A and B
are independent, then P(A * B) = P(A), as in the nonfuzzy case.
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The notions of mean, variance, and entropy of fuzzy events can be
defined in a similar way (for instance, the mean is

  

1
P A( )

 x
Rn∫ µ A x( )dP

(Zadeh, 1968)).
The possibility of a fuzzy event A in a universe X with respect to the

possibility measure P can be defined analogously as

P(A) =)
A
1 + P(·) =)

X
 m

A
(x) + P(·).

According to (11), P(A) = sup
x[X

min(m
A
(x), p(x)) (Zadeh, 1978) where

p(x) is the possibility distribution associated with P. The possibility of a
fuzzy event is thus the degree of consistency of this fuzzy event with a
possibility distribution. As in the nonfuzzy case, we have P(A < B)
= max(P(A), P(B)) and A # B implies P(A) < P(B).

Let X and Y be two universes, A, B be two fuzzy events in X, Y, and
p(x, y) a possibility distribution over X 3 Y. Two fuzzy sets A and B will
be said to be noninteractive iff

P(A > B) = min(P(A), P(B)).

In particular, when p(x, y) is separable, i.e.,

p(x, y) = min(p
X
(x), p

Y
(y));

and if A is a fuzzy set on X and B on Y, then considering the cylindrical
extensions c(A), c(B) we have

P(c(A) > c(B)) = min(P
X
(A), P

Y
(B)).

Proof:

  c A( ) I c B( )( )∏ = sup
x, y

 min µ A x( ),  µB y( ),  π x,  y( )( )
= sup

x, y
 min min µ A x( ),  πX x( )( ),  min µB y( ),  πY y( )( )( )

= min sup
x

µ A x( ),  πX x( )( ),  sup
y

µB y( ),  πY y( )( )



 ,

and A and B are noninteractive. Q.E.D.



143II.5.  Fuzzy Measures

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

Lastly, there holds Bayes’s theorem for possibilities of fuzzy events:

P(A, B) =)
B
P(A, y) + P

Y
(·) =)

A
P(x, B) + P

X
(·)

where A [ ~3(X), B [ ~3(Y).

A,  y( )∏ = sup
x∈X

 min µ A x( ),  π x,  y( )( ),

x,  B( )∏ = sup
y

 min µB y( ),  π x,  y( )( ).
P

y
 (resp. P

x
) is the possibility measure associated to the projection on Y

(resp. on X) of the (separable or not) distribution p(x, y):

A,  B( )∏ = sup
x∈X
y∈Y

 min µ A x( ),  µB y( ),  π x,  y( )( ).

The proof is similar to that of (13).

b.   Fuzzy Probability/Fuzzy Possibility of a Fuzzy Event

We give here only basic definitions and a rationale. Instead of evaluat-
ing the proportion of elements of a sample space “belonging” to a fuzzy set
C, we may calculate the possibility level that there exists a nonfuzzy event
matching C, which occurs with a given probability. In the following we
assume X = R. Let p(x) be a probability distribution and (A, B) a fuzzy
interval bounded by two nonoverlapping convex normalized fuzzy sets on
R. According to 4.C.b., the fuzzy probability of the fuzzy event “x belongs
to the fuzzy interval (A, B)”  is FP[(A, B)] (Dubois and Prade, 1978)

  
FP A,  B( )[ ] = p x( )dx

A

B

∫ = P B( )  *  P A( )

When A and B are ordinary numbers, the above formula becomes the
usual definition of probability that x [ [A, B] . Here, the result is a fuzzy
set of [0, 1] which can be interpreted as a linguistic probability (Zadeh,
1975).

Analogously, fuzzy possibilities of fuzzy events can be defined through
the extension principle: FP[(A, B)] has membership function

µ
F A, B( )[ ]∏

z( ) = sup
x, y

z=maxπ t( )
t∈ x, y[ ]

min µ A x( ),  µB y( )( ),

which is a particular case of Sugeno’s integral extended by the extension
principle. p is a possibility distribution over R. This formula can be
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simplified according to the respective positions of p (assumed normalized
and convex) and (A, B).

N.B.: The existence of two points of view on “fuzzification,” yielding
either nonfuzzy results or fuzzy ones, seems to be very general. Other
examples are the power of a fuzzy set and fuzzy cardinality (1.D.),
extremum of a function on a fuzzy domain (4.B.), fuzzy or nonfuzzy
integration over a fuzzy interval (4.C.b.).

D. FUZZY DISTRIBUTIONS

a. Probabilities

A probability distribution cannot always be precisely identified. Thus,
probability and possibility values are often rather subjectively assessed. A
linguistic probability will be modeled by a fuzzy set on [0,1] (Zadeh, 1975).

Let X = { x
1
, . . . , x

n
). To each x

i
 is assigned a linguistic probability ~pi

[ ~3([0,1]) and a variable P({ x
i
}) restricted by ~pi

. The linguistic probabili-
ties ~pi

, i = 1, n, are b-interactive (3.A.b) because of the normalization
constraint on the possible nonfuzzy values of P({ x

i
}) ( ~pi

 is viewed as
inducing a possibility distribution on the values of P({ x

i
})). The fuzzy

restriction associated with P({ x
l
}), . . . , P({ x

n
}) is R(P({ x

i
}), . . . ,

P({ x
n
})) = R(P({ x

1
})) 3· · ·3 R(P({ x

n
})) > Q where Q is the nonfuzzy

relation Q(u
l
, . . . , u

n
) = 1 iff Sn

i=1
u

i
 = 1, and R(P({ x

i
})) = ~pi

.
Now consider the interactive sum s of the ~pi

 (i = 1,n). Its membership
function is given by   µσ z( ) = sup

z=u1+L+un
1=u1+L+un

min
i

m
~~pi
(u

i
)

Obviously, m
s
(z) = 0 for z ≠ 1; and m

s
(1) evaluates the mutual consistency

of the ~pi
 with respect to the normalization constraint. We shall admit that

an n-tuple (~pi
, . . . , ~pi

) of linguistic probabilities is totally consistent
whenever m

s
(1) = 1, i.e., '(u

1
, . . . ,u

n
) [ [0, 1]n such that u

~pi
,(u

i
) = 1, ;i and

Sn
i=1

u
i
= 1.

The fuzzy probability of a subset of X, say X′ = {x
l
, . . . , x

k
}, k < n, is

a fuzzy interactive sum s
k
 of the ~pi

 (i = 1,k), such that  µσk
z( ) = sup

z=u1+L+uk
u1+L+uk ≤1

min
i=1, k

m
~~pi
(u

i
) = min (1, ~pi% · · ·% ~pk).

The fuzzy expectation of a random variable V taking values in a set
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{a
l
, . . . , a

n
} , R with linguistic probabilities ~pi

, i = 1, n is the interactive
sum E(V) such that

  
µE V( ) z( ) = sup

a1u1+ L  +anun=z
u1+ L  un=1

min
i=1, n

µ p̃i
ui( ).

The calculation of m
E(V)

 may be tricky when n > 2. It is equivalent to
the mathematical programming problem: maximize u under the constraints

µ p̃i
ui( ) ≥ θ ,    i = 1,  n; aiui

i = 1

n

∑ = z; ui

i = 1

n

∑ = 1.

The case n = 2 was already solved in Section 3.A.b. When the a
i
 are

membership values that characterize a fuzzy event A, E(V) is the linguistic
probability of the fuzzy event A in the sense of Zadeh (1975).

When X = R, the probability distribution becomes a fuzzy function ~p of
a nonfuzzy real variable. Two points of view exist because we may choose
a fuzzy bunch or a fuzzifying function (see 4.A.c). If ~p is a fuzzy bunch
~p = ∫a / p

a
, it will be a fuzzy set of probability distributions, i.e.,

∫
R
p

a
(x)dx = 1   ;a.

Note that this point of view would not be, in the discrete case, equivalent
to that of linguistic probabilities. The corresponding approach would be a
set of n-tuples {p

iα}
i = 1, n

 with piαi=1
n∑ = 1 ;a [ [0, 1], where a is a

membership value for the n-tuple. A drawback of this approach is the
possible existence of ambiguities in the value of the membership function
of the probability of some fuzzy events. (It is possible to have S

i [ 1
a

i
p

iα
= S

i [ I
a

i
p

iα′ for α ≠ α ′ and some I , (1, . . . ,n): then we may use sup(α,
a′) to solve the ambiguity; see 4.A.c.β.) The point of view equivalent to
linguistic probabilities is the use of a fuzzifying function x ° ~p(x). To be
sure that ~p is in some sense a “fuzzified” probability distribution, we may
impose its l-level curve p

l
 (4.C.a.a) to be such that   p

R∫ 1
x( )dx = 1. The

probability measure of an interval [a, b] will be min(l, ~ pa

b
∫ x( )dx) (see

4.C.A.b,g).

b. Possibilities

Let X be a finite set. A fuzzy possibility value ~p(x) can be assigned to
each x in X. ~p(x) [ ~3([0, 1]). Such a fuzzy possibility distribution will be

said to be normalized iffmax
x [ X~p(x) = ~P(X) is such that m

~P(X)
(l) = 1.

This happens whenever 'x [ X such that m
~p(x)

(1) = 1. Hence, the fuzzy
possibilities ~p(x) are not β-interactive. The fuzzy possibility of a nonfuzzy
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event (set) A of X will be
~P(A) = max ~ p (x).

     
 x [ A

If A is fuzzy, ~P(A) = maxx [ X min (~p(x), m
A
(x)) in the sense of C.a.

When X is nonfinite, we need an extended sup, sup, to carry out the
same approach.

Obviously fuzzy possibilities may model linguistic possibility values; this
together with linguistic probabilities will be studied from a logical or
semantic point of view further on.
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Part III
FUZZY MODELS AND
FORMAL STRUCTURES

It seems that a lot of researchers have focused their attention on fuzzy
formal structures, i.e., models of static, deductive, algorithmic, and dy-
namic fuzzy systems. Most of these are extensions of already existing
nonfuzzy structures. However, a few depart from classical approaches.

Chapter 1 deals principally with fuzzy logic, i.e., fuzzy switching logic,
multivalent logics as underlying fuzzy set theory, and approximate reason-
ing.

Chapter 2 is devoted to fuzzy dynamical systems. Our constant concern
is to keep clear the semantic interpretation of the formal developments.

Chapter 3 first surveys the past and current research on fuzzy formal
languages and grammars and their relations to automata. Then, two points
of view on fuzzy algorithms are presented.

Chapter 4 reflects the first attempts to apply fuzzy set theory to opera-
tions research models.
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Chapter 1
MULTIVALENT AND
FUZZY LOGICS

This chapter is devoted to semantical aspects of non-Boolean logics in
correlation with fuzzy set theory. The first section gives an account of
fuzzy switching logic focusing on the fuzzy version of a well-known
problem for Boolean functions, that of their canonical and minimal
representations in terms of conjunction and disjunction. Section B provides
a systematic presentation of multivalent logics as underlying fuzzy set
theory. Most of these were developed in the 1920s and 1930s without any
set-theoretic interpretation. Applications of fuzzy set theory to modal logic
are briefly sketched in Section C. However, the link between possibility
theory and modal logic has not been made completely clear yet. We deal
then with the extension of multivalent logics to fuzzy truth values. Lastly,
Zadeh’s recent theory of approximate reasoning is emphasized. It contrasts
with multivalent and fuzzy-valued logics in that a proposition is now
viewed as associated with a possibility distribution that fuzzily restricts the
values of the variables involved in the proposition. Although this approach
is very new, it already appears to be a promising methodology for model-
ing human reasoning.

A.   FUZZY  SWITCHING  LOGIC

One of the major fields of application of Boolean logic is the theory of
electronic switching circuits. Such circuits are modeled by Boolean expres-

Fuzzy Sets and Systems: Theory and Applications
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sions which may involve only negation, disjunction, and conjunction
connectives. The problem of finding a minimal representation for these
expressions has been considered at length in the literature (McCluskey, NF
1965). We are concerned here with the representation and minimization of
fuzzy logical expressions. Many works have already been published on this
very specific topic as shown by the extensive bibliography at the end of the
chapter. For a more detailed presentation, see Lee and Kandel (1978).

a.   Fuzzy Expressions

Let x, x
1
, x

2
 be variables taking their values in [0, 1]. The following

notations are adopted:L x = 1 − x (negation); x
1

~ x
2
= max(x

1
, x

2
) (dis-

junction); x
1
`  x

2
 = min(x

1
, x

2
) (conjunction).

Recall that ({0, 1}, ~, `, L,) is a Boolean lattice (see II.1.B.d), whereas
([0, 1], ~, `, L) is only a pseudocomplemented distributive lattice (see
II.1.B.d). In particular, ; x []0, 1[, x ` ( L x) ± 0, x ~ ( L x) ± l, which
contrasts with the Boolean case.

A fuzzy expression is a function from [0, 1]n to [0, 1] defined by the
following rules only:

(i) 0, 1, and variables x
i
, i = 1, n, are fuzzy expressions;

(ii) if  f  is a fuzzy expression, then L f is a fuzzy expression;
(iii) if  f and g are fuzzy expressions, then f ` g and f ~ g are too.

Note that all Boolean expressions, once their domain is extended to
[0, 1]n, can be fuzzy expressions. This is because all Boolean expressions
can be expressed only in terms of L, `, ~. However, this is not the only
way to extend Boolean expressions; operators different from max and min
can be used, as will be seen in B.

The fact that we consider here only fuzzy expressions is what makes this
section rather specific from a logical point of view. Its interest lies in its
practical attractiveness for switching-circuit specialists.

A literal is a variable x
i
 or its negation L x

i
. A phrase is a conjunction of

literals. A disjunction of literals is called a clause. Owing to the mutual
distributivity of ~ and `, any fuzzy expression can be transformed into a
disjunction of phrases or a conjunction of clauses.

b.   Some Properties of Fuzzy Expressions

α.   Monotonicity with Respect to Ambiguity   (Mukaidono, 1975a)

    The partial ordering relation that describes ambiguity is A such that:
;a

i
, a

j
 [[0, 1], a

i 
A a

j 
iff either 1

2
 < a

i
 < a

j 
 or 1

2
 > a

i
 > a

j
. We have 1

2
 A a

i
,

;a
i
 [[0, 1]. Moreover, a

i
 [] 1

2
, 1] and a

j
 [ [0, 1

2
 [cannot be compared. a

i  
A a

j
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means: “a
i
 is more ambiguous than a

j .” A is extended to [0, 1]n as follows:

;a = (a
1
 , . . . , a

n
) [ [0, 1]n ,   ;b = (b

1
 , . . .  , b

n
) [  [0, 1]n,

a A b          iff         ;i = 1,n,   a
i 
A b

i
.

Theorem (Mukaidono, 1975a) Let f be a fuzzy expression mapping
[0, 1]n →[0, 1]; if a A b, then f(a)A f(b).

Proof:  The results trivially holds for 0, 1, and any variable. Now it is
easy to show that if it holds for f and g, fuzzy expressions, then it also
holds for L f,  f  ` g, f  ~ g.   Q.E.D.

As a consequence ;b such that b A a, if f(a) = 1

2
 , then f(b) = 1

2
. Replac-

ing terms in a by others that are closer to 1

2
 does not change f(a) in that

case. Moreover, if f(a) = ω, ω [ {0, 1}, then f(b) = ω, ;b such that a A b.

β. Canonical Disjunctive Form of a Fuzzy Expression   (Davio and
      Thayse, 1973)

Since excluded-middle laws no longer hold on ([0, 1], `, ~, L), there is
no unique way to represent a fuzzy expression as a disjunction of phrases.
There are two kinds of phrases:

simple phrases in which a variable appears at most once, as a literal;
contradictory phrases in which conjunctions such as x

i ` (L x
i
) appear.

If P is a contradictory phrase, then P(a) < 1

2
 ; a [[0, 1]n. Hence, since

x
i
 ~ (L x

i
) > 1

2
,

P ` (x
i
 ~ (L x

i
)) = P = [P ̀  x

i
] ~ [P` ( L x

i
) ].

The latter expression and P are two forms of the same fuzzy expression.
The above manipulation clearly indicates that any contradictory phrase
can be expanded into a disjunction of contradictory phrases which contain
each variable at least once. Such phrases are called completed.

The canonical disjunctive form of a fuzzy expression is a disjunction of
simple or completed contradictory phrases. The proof of the uniqueness of
this form can be found in Mukaidono (1975a). An algorithm for obtaining
the canonical disjunctive form is (Davio and Thayse, 1973):

  expand the expression into a fuzzy disjunctive form;
expand the contradictory phrases into a disjunction of completed con-

tradictory phrases;
suppress redundant phrases using absorption laws (see II.1.B.d).

N.B.:  Dual results on a canonical conjunctive form involving only
simple and completed “tautological” clauses obviously hold.
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g.   Fuzzy Expressions and Ternary Logic

The number of fuzzy expressions involving n variables is finite. This was
proved by Preparata and Yeh (1972) who gave the following theorem, here
stated in the terminology of Mukaidono (1975a): If fuzzy expressions f and
g satisfy f(a) = g(a) ;a [ {0, 1

2
 , 1}n, then f(a) = g(a) ;a [ [0, 1]n.

Proof:   Denote by x
i
* either x

i
 or Lx

i
. The domain of f can be

partitioned into subdomains characterized by the constraint 0< xi1

∗  < . . .

< xin

∗
< 1

2
 where (i

1
, . . . ,i

n
) is a permutation of (1, . . . , n). Clearly, for a

given permutation there are 2n ways of choosing an n-tuple of literals, so
that the number of subdomains is n! . 2n. Now consider a given subdomain.
The value of a phrase is that of a unique literal over the whole subdomain.
Viewing f as a disjunction of phrases, the value of f is also that of a unique
literal over this subdomain, say either x

l
 or Lx

l
. Each subdomain is a

convex polyhedron whose vertices are {υ k}
k = 0, n

  such that

υ 0    is defined by     x i
*= 0,  i = 1,n;

υ k    is defined by     x ij
* = 0, j = 1,n − k;

                                x*ij = 1

2
, ;j = n − k + 1,n (k > 0);

υ n    is defined by      x
i
 = 1

2
,   i = 1,n.

Any element a of the subdomain is a convex combination of the υ
i
, say

a = 
i

n∑ = 0
α

i
υ i. Now on the subdomain assume f (a) = a

l
 [[0, 1], then

f a( ) = al = α iυl
i

i  = 0

n

∑ = α i f υ i( )
i  = 0

n

∑
(with υi = (υ 1

i , . . . υ l
i , . . . υ n

i )). If f (a) = La
l
, the same result holds because

i  = 0

n∑ α
i
 = 1. Q.E.D.

This proof was given by Preparata and Yeh (1972). The value of f for
any element of [0, 1]n is thus determined by its values for n + 1 elements of
{0, 1

2
, 1}n.

Kaufmann (1975) suggested the use of the subdomain defined above to
check the equality of two fuzzy expressions. However, using the above
result, this checking is easier by enumeration of elements in (0, 1

2
, 1 }n.

N.B.:   Some authors have tried to evaluate the number of fuzzy expres-
sions involving n variables. Until now, only upper and lower bounds—and
not very good ones—have been found (see Kandel, 1974b; Kaufmann,
1975; Kameda and Sadeh, 1977).
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c.   Minimization of Fuzzy Expressions

The minimization of Boolean expressions has already been completely
discussed in the literature. It usually proceeds in two steps. First, obtain a
set of prime implicants; second, select the minimal set of implicants whose
disjunction is equal to the Boolean expression. Because of the lack of
excluded-middle laws, implicants of fuzzy expressions may be contradic-
tory phrases. Thus, Boolean methods are no longer valid for determining
prime implicants. However, the minimal form is still the disjunction of a
minimal subset of prime implicants, which are said to be essential.

Definitions   An implicant P of a fuzzy expression is a phrase such that
; a [ [0, 1]n P(a) < f (a), which is denoted P ⇒ f.

N.B.:  Actually, ⇒ is not a natural implication connective for fuzzy
switching logic, which is nothing but K-SEQ (see B.b.α)).

A prime implicant P of a fuzzy expression f is an implicant such that for
any phrase P ′, if P⇒ P ′ and P ′⇒ f, then P = P ′ or P ′ = f. Hence a prime
implicant is a “greatest,’’ implicant of  f.

First algorithms for generating all prime implicants were proposed by
Lee and Chang (1971) and by Siy and Chen (1972). These methods were
criticized (Kandel, 1973a; Negoita and Ralescu, 1976). Then, Kandel
(1973b) presented a method based on the notion of fuzzy consensus, which
was extended (Kandel, 1974c) to incompletely specified fuzzy expressions.
Further critiques and refinements of this method can be found in Kandel
(1973c, 1976a, 1977), Mukaidono (1975a), and Lee (1977). We follow here
Mukaidono (1975a).

Let P and P ′ be phrases over the set of variables {x1
, x

2
, . . . , x

n
}. A

fuzzy consensus of P and P ′ is a contradictory phrase Φ built as follows:

find x
i
 with P = x i

*  ` Q, P ′ = (L x i
* ) ` Q ′ where Q, Q ′ do not contain

the variable x
i
;

Φ = Q ` Q ′ iff Q ` Q ′ is a contradictory phrase;
Φ = Q ` Q ′ ` x

i
 ` (L x

i
) iff Q ` Q ′ is a simple phrase;

(x i
* means either x

i
 or L x

i
 .)

Theorem  (Mukaidono, 1975a) A disjunctive form of a fuzzy expres-
sion f contains all its prime implicants iff:

       (i)      there is no phrase that is an implicant of another phrase of  f;
    (ii)    the fuzzy consensuses of any two phrases either do not exist or are
                 implicants of at least one phrase of  f.
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Hence, there can be developed an algorithm that works on a disjunctive
form, calculates and adds all the fuzzy consensuses of pairs of phrases until
the conditions of the above theorem are satisfied; the set of all prime
implicants of f is thus generated.

Another kind of method serving the same purpose was initiated by
Preparata and Yeh (1972); it is based on the distinction between simple
phrases and contradictory phrases of the canonical disjunctive form of a
fuzzy expression. In particular, simple phrases are prime implicants. More
about this approach can be found in Davio and Thayse (1973), Mukaidono
(1975b), and Negoita and Ralescu (1975). Another approach is that of
Benlahcen et al. (1977); this uses decomposition into subdomains as in
b.γ). Lastly, Neff and Kandel (1977) have proposed a very fast algorithm
that generates at once essential prime implicants, i.e., those prime impli-
cants whose disjunction realizes a minimal disjunctive form for the fuzzy
expression under consideration.

N.B.:  1.  Boolean Karnaugh maps have also been extended to deal
with fuzzy expressions (see Malvache and Willaeys, 1974; Kandel, 1976b;
Schwede and Kandel, 1977).

N.B.:  2.  Dually, fuzzy implicates could be sought to build a minimal
conjunctive form for a fuzzy expression (see Davio and Thayse, 1973;
Negoita and Ralescu, 1975).

d.   Analysis and Synthesis of Fuzzy Expressions

These problems were investigated by Marinos (1969). To analyze a fuzzy
expression f is to find a range for each of its variables such that f (x)[
[α , β [, [0, 1], where x = (x

1
 , . . . , x

n
). f is assumed to be in conjunctive or

disjunctive form. For both forms, Marinos proposed automatic rules for
stating the conditions that the variables must satisfy. These conditions can
be separated into two dual groups, one of which corresponds to f (x) > α,
the other to f (x) < β.

The converse problem, i.e., find f from knowledge of the ranges of the
variables and of [α, β[, is called synthesis. The structure of the fuzzy
expression crucially depends on that of the groups of conditions. Marinos
gives a method for simulating a fuzzy expression using analogue devices. A
detailed presentation of this method is provided in Negoita and Ralescu
(1975) and Kaufmann’s (1975) book, in which numerous examples are
discussed.

A similar attempt is that of Srini (1975) who realized fuzzy expressions
by means of networks of electronic binary switching devices. He used
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values between 0 and 1 in the form

  

x = pi 2− i

i=1

`

∑ ,               p
i 
[ {0, 1},

and then approximated as pi 2− i

i=1

n∑ . The p
i
 are inputs and outputs of the

binary devices.

e. Detection of Hazards

Let f
B
 be a Boolean expression. Consider the set F(f

B
) of all fuzzy

expressions f compatible with f
B
, i.e., such that ; a [ {0, 1} n, f

B
(a) = f(a)

Davio and Thayse pointed out that F(f
B
) was a lattice for ~, ` (see

Kameda and Sadeh, 1977), more specifically a sublattice of the lattice of
fuzzy expressions. This sublattice is, of course, distributive. The following
result holds (Kameda and Sadeh, 1977).

Let f
m
 and f

M
 be the canonical conjunctive and disjunctive forms f

B
,

then f
m
 and f

M
 are the minimal and maximal elements of F(f

B
), respec-

tively.
Mukaidono (1975b) showed that F(f

B
) was also a complete distributive

lattice in the sense of the ambiguity relation A (see b.α). The minimal
element is the disjunction of all prime implicants of f

B
. The maximal

element is f such that f [ F(f
B
) and f (a) = 1

2
; a [ {0, 1

2
, 1}n − {0, 1} n.

Davio and Thayse (1973) gave a binary parametric representation of F(f
B
)

which led to the design of a logic module capable of realizing any fuzzy
expression compatible with a given Boolean expression. They also hinted
that F(f

B
) could model the possible transient behavior of a switching

circuit realizing f
B
.

Kandel (1974a), then Hughes and Kandel (1977) indeed used fuzzy
switching logic to detect hazard in combinatorial switching circuits. For-
merly, the mathematical tool for hazard detection was ternary logic (see,
for instance, Mukaidono (1972) and Kandel (1974a) for a bibliography).

Two binary vectors a = (a
1
 , . . . , a

n
) and b = (b

1
 , . . . , b

n
) in {0, 1} n are

said to be adjacent iff ∃!j [ {1, . . . , n}  such that b = (a, . . . , a
j − 1

, L a
j
,

a
j + 1

 , . . . , a
n
). The device under study is assumed to have n inputs and one

output whose value is f (a) when the inputs are a
1
, . . .  , a

n
. f is a fuzzy

expression. We consider the case when an input j switches from a
j
 to

La
j 
[ {0, 1} . A transient value of j is t

j
[ ]0, l[  and t = (a

l
, . . . , a

j − 1
, t

j
,

a
j + 1 

, . . . , a
n
). Assume the switching of input j does not modify the steady

state of the output, i.e., f(a) = f(b). t is then called a hazard iff f (t) ≠ f (a)
= f (b), i.e., the output is not steady during the transient phase. If f (a)
= f (b) = 1, t is said a l-hazard; if f (a) = f (b) = 0, it is said a 0-hazard.
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  f (x) = (x
j
 ` f

1
(x j )) ~ (( L x 

j
) ` f

2
(x j )) ~ ([L  x

j
] ` x

j
 ` f

3
(x j )) ~ f

4
(x j )
         (1)

with x j = (x
1
, . . . ,x

j − 1
, x

j + 1
, . . . .,x

n
) and f

l
, f

2
, f

3
, f

4
 fuzzy expressions

of n − 1 variables.
The following theorems, due to Kandel (1973c), give conditions on the

steady input states for the output to be disturbed during the switching of
input j:

t is a 1- hazard     iff 
            

f
1
(a j ) = f

2
(a j ) = 1   and    f

4
(a j ) = 0.

t is a 0- hazard         iff 
         

  f
1
(a j ) = f

2
(a j ) =  f

4
(a j ) = 0    and    f

3
(a j ) = 1.

Proof:  Assume t is a 1-hazard; a
j 
= 1.

Initial state: a
j
 = 1, hence 

 
f
1
(a j ) ~  f

4
(a j ) = 1.

Final state: a
j
 = 0, hence  f

2 
(a j ) ~  f

4
(a j ) = 1.

Transition state: by hypothesis f (t)[]0,1[. Hence, from (1), f
4
(a j ) ≠ 1,

i.e., f
4
(a j )= 0, which yields the result. For 0-hazards the proof is very

similar and omitted. The “if ” parts of the theorems are obvious.   Q.E.D.

Lastly, Hughes and Kandel (1977) generalized this approach to detect
hazards when several inputs switch simultaneously.

B.   MULTIVALENT LOGICS

Three fuzzy set theories were presented in Chapter 1 of Part II:
(  3̃ (X), <, >, #), (  3̃ (X),+̂ , . , #), and (  3̃ (X), . , , , #). Multivalent logics,
which are bases for these set theories and some others, are the topic of this
section. We consider here, from a semantic point of view, only indenumer-
ably valued logics whose truth space is the real interval [0, 1]. We are not
concerned here with the “fuzzification” of binary and finite multival-
ued logical calculi in the sense of Pinkava (1976) (i.e., to get a functionally
complete logical calculus with “generalized” connectives). The exposition
uses Piaget’s group of transformations, which is first reviewed. A general
survey of multivalued logics can be found in Rescher (NF 1969).

a.   Piaget’s Group

Let Φ be a propositional variable containing elementary propositions
P, Q, R . . . joined with logical connectives. Φ is a wff symbolically written
Φ = f (P, Q, R, . . .).

Now f (x) can be written
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Four transformations can be defined on Φ:

     (1)  identity: I (Φ) =  Φ;
(2)  negation: N(Φ) = LΦ;
(3)  reciprocity: R(Φ) = f ( L P, L Q,L R, . . . );
(4)  correlativity: C(Φ) = L R(Φ);

where  L denotes the unary connective for negation of a proposition.
These transformations, for a function compositional law, have a Klein

group structure whose table is given in Fig. 1

I N R C

I I N R C
N N I C R
R R C I N
C C R N I

Figure 1

Piaget showed that, for children, learning of human reasoning demands
a perception of these transformations, that is, understanding the difference
between sentences such as

Φ = “Good poets are bad husbands.”
N(Φ) = “Good poets are not bad husbands.”
R(Φ) = “Bad poets are good husbands.”
C(Φ) = “Bad poets are not good husbands.”

The mathematical formalization of this group of transformations can be
found for instance in “Piaget’s theory of development: The main stages”
by Hermine Sinclair (in Murray, NF 1972, pp. 68–78).

Let us make explicit the link between these transformations and binary

P      Q     PQ
•

       P~Q      Q→P       P        P→Q       Q      P↔Q       P̀  Q

1       1         1            1             1           1            1           1          1             1
   1       0         1            1             1           1            0           0          0             0
   0       1         1            1             0           0            1           1          0             0
   0       0         1            0             1           0            1           0          1             0

  P        Q    P Q    PexQ      LQ       QVP      LP      PVQ    P↓Q        PQ

   1       1         0            0             0           0            0           0          0             0
   1       0         1            1             1           1            0           0          0             0
   0       1         1            1             0           0            1           1          0             0
   0       0         1            0             1           0            1           0          1             0

Figure 2

  o
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Figure 3

connectives in the case of the binary propositional calculus. The truth
tables of the 16 standard binary connectives are given in Fig. 2, where ⋅

denotes tautology, ~ disjunction, → implication, ↔ equivalence, ̀
conjunction,  is Sheffer’s connective, ex denotes exclusive disjunction, ↓ is
Peirce’s connective and ° denotes contradiction. V has no common name.

These 16 connectives are exchanged through I, R, N, and C as shown in
Fig. 3.

b.   Multivalent Logics Associated with Fuzzy Set Theories

The semantic truth functions of the three multivalent logics underlying
the three fuzzy set theories   3̃ (X), <, >, #), (  3̃ (X), ., ,, #), (  3̃ (X), +̂ , . ,#)
are now given. Let us denote by υ (P) the truth value of a proposition P,
υ (P) [ [0, 1].

In the three cases, the valuation of the negation is υ(LP) = 1− υ (P).
Hence, υ (LL P) = υ (P).

In the three cases, the implication connective → is always defined as
υ (P → Q) = υ (LP ~ Q) and the equivalence as υ (P ↔ Q) = υ [(P → Q)
 ` (Q → P)]; ex, , ↓, and V are expressed as the negation of ↔ , `, ~,
and ←, respectively; the tautology and the contradiction are defined
respectively as:

υ ( P
•
) =  υ (P ~ L P);          υ (  P

o

) = υ (P ̀ L P).

more generally,

    υ ( PQ
•

) = υ ((P ~L P) ~ (Q ~ L Q ));

    υ (  PQ
o

) = υ ((P ~L P) ` (Q ~ L Q )).
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These three multivalent logics are extensions of the classical two-valued
logic.

α.   Logic Associated with (  3̃ (X), <, >, # )

The disjunction and the conjunction underlying < and >(see II.1.A)
are respectively

υ (P ~Q) = max(υ (P),υ (Q)),      υ (P ` Q) = min(υ (P), υ (Q))

It is clear that ~ and ` are commutative, associative, idempotent,
distributive over one another, and do not satisfy the excluded-middle laws
in the sense that υ (P ~ L P) Þ 1 and υ (P ` L P) Þ 0; moreover, we have

υ (P~ (P ̀  Q)) = υ (P);      υ (P ̀  (P ~ Q)) = υ (P)

                                                                                                          (absorption);

υ (L(P ̀  Q)) = υ (L P ~ L Q);     υ (L (P ~ Q)) = υ (L P ` L Q)

(DeMorgan);

  υ [(L P ~  Q) ` (P ~ L Q)] = υ [(P ` Q) ` (L P ̀  L Q)]

(equivalence);

                  υ [(L P ` Q) ~ (P`L Q)] = υ [(P ~ Q) ` (L P ~ L Q)]

(exclusive disjunction).

Figure 4 gives the valuation of the 16 connectives that have been
introduced with υ (P) = p and υ (Q) = q.

P Q PQ
•

P ~Q Q→ P P
p q max(p, 1 − p, q, 1 − q) max(p, q) max(p, 1 − q) p

P Q P→ Q Q P↔ Q P ` Q
p q max(1 − p, q) q min(max(l − p, q) max(p, 1 − q)) min(p, q)

P Q P Q P ex Q L Q QVP
p q max(1 − p, 1 − q) max(min(1− p, q)  min(p, 1− q))  1− q   min(p, 1 − q)

P  Q      LP               PVQ                        P↓Q                                   PQ
o

p   q        1 − p     min(1 − p, q)          min(p, 1 − p, 1 − q)         min(1 − p, q, 1 − q)

Figure 4
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Valuations for quantifiers are straightforwardly defined (coherently with
` and ~)as

υ(;xP(x)) = inf
x

(υ(P(x))), υ(∃xP(x)) = sup
x

(υ(P(x)))

where x denotes an element of the universe of discourse.
  This multivalent logic is usually called K-standard sequence logic(K-
SEQ), first developed by Dienes. This logic is compatible with Piaget’s
group of transformations in the sense of Fig. 3.

Moreover, we have the following properties:

for implication, υ[P → (Q → R)] = υ[(P ` Q) → R];
for tautology and contradiction,

υ (P → P) = υ( P
•
) ,     υ ( P

•
→ P) = υ (P);

υ (P → P
•
) = υ ( P

•
);     υ ( P ↔ P) = υ ( P

•
);

    υ (  P
o

→ P) = υ ( P
•
);       υ (P →   P

o

) = υ (L P);

                           υ (P ↔ L P) = υ (  P
o

) ,

for Sheffer’s and Peirce’s connectives,

υ (L P) = υ (P P);        υ (P→ Q) = υ (P (Q Q));

   υ ( P
•
) = υ (P   (P   P)).

Sheffer’s connective alone (or Peirce’s) is sufficient to build every binary
and unary connective in standard binary logic. This result remains valid
for the “extended ” connectives of K-SEQ.

The implication → is clearly related to the weak set inclusion introduced
in II.l.E.c.α, and ex to the symmetrical difference n (II.1.B.f).

Gaines (1976b) has shown that this multivalued logic was nothing but
the fuzzification (in the sense of the extension principle) of standard
propositional calculus. Each proposition P is associated with a normalized
fuzzy set on {0, 1}, i.e. a pair (µ p (0), µ p (1)) where µ p (0) may be interpreted
as a degree of falsity and µ p (1) as a degree of truth. Since the logical
connectives of the standard propositional calculus are truth functional, i.e.,
may be represented as functions, they can be fuzzified. Defining υ (P)
= (1 – µ p (0) + ,µ p (1)) / 2 [ [0, 1], Gaines gets the multivalued logic de-
scribed above. For proofs, the reader is referred to Gaines (1976a, b).
Lastly, this multivalued logic is basically trivalent in the sense that when
two wffs, built with the above connectives, coincide on {0,1

2 , 1}, then they
coincide on [0, 1] (see A.b.g).



163III.1.  Multivalent and Fuzzy Logics

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

β.     Logic Associated with  (  3̃ (X), ., ,, #)

    The disjunction and the conjunction underlying . and ,(see II.l.B.e)
are respectively

υ (P> Q) = min(1,υ (P) + υ (Q)),

υ (P < Q) = max(0,υ (P) + υ (Q) − 1).
It is clear that > and < are commutative, associative, but are not

idempotent and not distributive over one another; they satisfy

υ (L (P < Q)) = υ (L P > L Q);

υ (L (P > Q))  = υ (L P< L Q)        (De Morgan)

υ (P > L P) = 1;           υ (P <L P) = 0         (excluded − middle laws).

Figure 5 gives the valuation of the 16 connectives that have been
introduced (υ(P)=p; υ(Q) = q). (To avoid confusion, ~, →, ↔, `,  ,
ex,V , ↓, are denoted in this logic >, ⇒, ⇔ <, i, ex, G,↓↓.)

P  Q PQ
•

P> Q Q ⇒ P P
p  q                  1      min(1, p + q)         min(1,p + 1 − q)          p

P  Q P⇒ Q        Q P⇔ Q P< Q
p  q    min(1, 1 − p + q)        q         1 −   p  −  q        max(0, p + q − 1)

P  Q Pi Q    Pex Q      L Q               QGP
p  q     min(1, 1 − p + 1 − q )          p  −  q         1 − q         max(0, p − q)

P  Q L P PGQ P↓↓Q   PQ
o

p  q                1 − p      max(0, q −  p)         max(0, 1− p − q)          0

Figure 5

This logic is compatible with Piaget’s group of transformations in the
sense of Fig. 3.

Moreover, we have the following properties for tautology and contradic-
tion:

υ (P ⇒ P) = υ ( P
•
);          υ ( P

•
 ⇒ P) = υ (P);

υ (P ⇒ P) = υ ( P
•
);          υ (P ⇔ P) = υ ( P

•
);

   υ (  P
o

⇒ P) = υ ( P
•
);          υ (P ⇒   P

o

) = υ (L P).
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The implication ⇒ is elearly related to the usual inclusion (in the sense
of Zadeh) for fuzzy sets (II.1.E.a). ex and G  correspond respectively to
the set operators , (symmetrieal difference) and  −  (bounded differ-
ence) introduced in II.1.B.f. Lastly, we have

υ(P → Q) = υ (L P> (P < Q))

  υ(P ⇒ Q) = υ(L P> (P ̀  Q)).

γ.  Logic Associated with (  3̃ (X), +̂ , . ,#)

The disjunction and the conjunction underlying +̂  and . (see II.1.B.e)
are respectively

υ(P γ Q) = υ(P) + υ(Q) − υ(P) . υ(Q);

υ(P & Q) = υ(P) . υ(Q).

It is clear that γ and &  are commutative, associative, but are not
idempotent and not distributive over one another; they satisfy

υ(L(P &  Q))= υ(L P γ L Q);

v( L (P γ Q )) = υ( L P & L Q)        (De Morgan).

Although it is easy to build the valuation of the 16 connectives as in
both preceding logics, we give only some of them for the sake of briefness,
with υ(P) = p, υ(Q)= q:

implication: υ(P A Q ) = 1− p + pq;

tautology: υ( P
•
) = 1− p(l − p);

contradiction: υ(  P
o
) =  p(l − p).

Note also we have the hybrid formulas
υ(P A Q) =υ(L P> (P & Q))    and

υ[(P A Q) < (QA P)] = υ[(P & Q) > (L P & LQ)]

= v[(P & Q) ⇔ (P y Q)]
This logic is compatible with Piaget’s group of transformations in the sense of

Fig. 3. This logic is often called stochastic logic.
Let us examine in what situations & coincides with ` or < (or γ with
~ or >). First, note that

and

0 < max(0, p + q − 1) < pq < min(p,q)

       1 > min(1, p + q) > p + q −  pq > max(p,q)
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Then it is easy to check that

ν (P & Q) = ν (P ` Q),

i.e., pq = min(p, q) iff the truth value of P or of Q is equal to 0 or to 1.
ν (P γ Q) = ν (P ~ Q) holds under the same conditions. And it is the same for ν (P
& Q) = ν (P < Q) and ν (P γ Q) = ν (P > Q).
Thus, two of  three connectives for conjunction (resp. disjunction) coin-
cide iff the truth value of P or of Q is equal to 0 or to 1. In that case the
three connectives for conjunction (resp. disjunction) coincide.

Remark     We have the following inequalities:

ν (P) + υ(Q) = ν (P ̀  Q) + ν (P ~ Q) = ν (P < Q) + ν (P > Q)

= ν (P &  Q) + ν (P  γ  Q ),

i.e., ν is a valuation (Birkhoff, NF 1948) in the lattice sense for the three logics.

c.   Other Multlvalent Logics; Other Implications

  Assembling the already introduced semantic truth functions differently,
other multivalent logics may be defined, for instance Lukasiewicz logic.
In Lukasiewicz logic the semantic truth functions for conjunction,
disjunction, and quantifiers are those of K-SEQ (i.e., ν (P  ` Q) =
m i n ( ν ( P ) , ν ( Q ) ) ; ν ( P ~ Q ) = m a x (ν ( P ) , ν ( Q ) ) ; ν ( ; x P ( x ) ) =
inf

x
 ν (P (x)); ν(∃ x P(x)) = sup

x
 ν (P (x)). The implication and the equiva-

lence are those of the logic associated with (  3̃ (X), ., ,, #) (i.e., ν (P ⇒ Q)
= min(l, l − υ(P) + υ (Q)), v (P ⇔ Q) = 1− v (P) − ν (Q) ). The negation
is classically υ(L P) = 1− υ (P). This logic is called Lℵ1 

. Lℵ1
 is the multiva-

lent logic underlying Zadeh’s ordinary fuzzy set theory, i.e., U for union,
> for intersection, and # for inclusion (see II.1.B.a and II.1.E.a). This
logic is obviously compatible with Piaget’s group of transformations in the
sense of Fig. 3. However, the link between disjunction and implication is
now υ(P ~ Q) = ν ((P ⇒ Q) ⇒ Q). Similarly to the stochastic implication
ν (P A Q) = 1 − ν (P) + ν (P & Q), we have here ν (P ⇒ Q) = 1 − ν (P)+
ν (P ̀  Q). Note that we have also ν (P → Q) = 1 − ν (P) + ν (P < Q).
Giles (1976a) has proposed an interpretation of Lℵ1 

in terms of risk.
Every chain of reasoning is seen as a dialogue between speakers whose
assertions entail a commitment about their truth.

Other semantic truth functions for implications may be found in the
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literature:
(1)

     
υ(P → Q)

     1
=

1

0




     The associated equivalence is
      

υ(P ↔ Q)
   1

=
1

0




With the semantic truth functions of K-SEQ for conjunction, disjunction,
negation, and the quantifiers, we get another standard sequence logic,
called R-SEQ (see Maydole, 1975).

(2)

   
υ(P → Q)

     2
=

1

n(Q)




The associated equivalence is

υ(P ↔ Q)
     2

= 



The implication →
2

, sometimes called Brouwerian implication, is nothing
but the operator α introduced in II.1.G.a and used by Sanchez, (Ref-
erence from II.3, 1976) (see II.3.E). With the semantic truth functions of
K-SEQ for conjunction, disjunction and the quantifiers, and the negation

υ (L P)=




we get the indenumerably valued Gödelian logic (see Maydole, 1975).

(3)      υ(P →
         3

Q) = max(l − υ(P),min(υ(P),v(Q))). Note that

     υ (P → Q) = max(l − υ (P), υ (Q))) Þ υ (L P ~(P ̀  Q)) = υ(P →
         3

Q)

This implication was considered by Zadeh (Reference from III.3, 1973).

(4) υ(P →
         4

Q)   = min(l, υ(Q) / υ (P)). This implication was introduced
by Goguen (1969). Gaines (1976b) noticed that this implication was closely
related to conditional probability since υ(P →

         4
Q)  = υ (P ̀  Q) / υ (P).

In order to compare all the introduced implications it should be noticed

       if    υ(P) < n(Q),
       other wise.

       if    υ(P) = n(Q),
       other wise.

   if    υ(P) < n(Q),
            otherwise.

1       if    υ(P) = n(Q),
min(n(P),n(Q))      otherwise.

1       if    υ (P) = 0
0       otherwise.
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that the following inequalities hold:

;P, Q,

 υ(P ⇒ Q) > υ(P A Q) > υ(P → Q) > υ(P →
         3

Q) > min(υ(P), υ(Q));

;P, Q,   υ(P ⇒ Q)> υ(P →
         4

Q) > υ(P →
         2

Q) > min(υ(P), υ(Q));

;P, Q,   υ(P →
         2

Q) > υ(P →
         1

Q)

Thus, the implication corresponding to Zadeh fuzzy set inclusion has the
greatest valuation of the implications introduced.

The implications→
2

, →
3

, →
4

 not compatible with Piaget’s group of
transformations in the sense of Fig. 3.

Moreover, Maydole (1975) generates paradoxes for R-SEQ and

Godelian logic—which use →
1

 and →
2

, respectively.

d.  Detachment Operations; Modus Ponens

The modus ponens rule allows Q to be inferred from P and P ° Q in
propositional calculus. In multivalent logics the problem is to compute
υ(Q) given υ(P) and υ(P ° Q) where° is any given multivalent
implication. Several authors, especially Goguen (1969), Kling (Reference
from IV.2), LeFaivre (Reference from IV.2, 1974a), have looked for a
detachment operation * such that

υ(P )*υ(P ° Q) < υ(Q ),

to have υ(Q) as large as possible. Note that the situation is similar to
probabilistic inference where if P(A) > α and P(B A) > β, then P(B)

> αβ since P(B) = P(B | A)P(A)+ P(B |L A) P (L A).
For υ(P ° Q) = υ(P→ Q) = max(l − υ(P), υ(Q)), * can be the min

operation since we have, if min(υ(P), υ(P → Q))) > 0.5,

min(υ(P),υ(P→ Q)) < v(Q) < max(υ(P), υ(P → Q)).

More precisely, if υ(P) > α and υ(P → Q) > β with α + ß > 1, then
υ(Q)> β. In particular, if υ(P) > 1

2
 and υ(P → Q)> 1

2
, then υ(Q) > 1

2
;

but if υ(P)> 1

2
 instead of υ(P) > 1

2
, then υ(Q) is indeterminate. The

validity of a chain of implications → when * = min is not less than the
validity of the least valid element in the chain. ]1

2
, l] is called the desig-

nated set of K-SEQ.
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Moreover, every axiom or theorem in standard propositional calculus
has a truth value greater than or equal to 1

2
 when we use the semantic

truth functions of K-SEQ. Reciprocally, if a wff has always a truth value
greater or equal to 1

2
 in K-SEQ, then it is a theorem in standard

propositional calculus.

Proof: Let Φ be a theorem. If P, Q, R, . . . are elementary propositions
involved in Φ, then ;υ(P), υ(Q), υ(R), . . . [ {0,1},υ(Φ)) = 1. Let us as-
sume ∃ p* ,q* , r* , . . . such that υ(Φ)) = f(p*, q*,t*, . . . ) < 1

2
. f can be

stated as a conjunction of disjunctions (i.e., of clauses). From the assump-
tion, one of the clauses is strictly smaller than 1

2
. Thus if p is involved in

this clause, 1 − p is not and conversely. We set to 0 every elementary truth
value in the clause—which becomes null—and we give arbitrary truth
values 0 or 1 to the other elementary propositions. Thus, we get v(Φ) = 0,
which contradicts the assumption. The converse is obvious.   Q.E.D.

Using K-SEQ, R. C. T. Lee (1972) proved that if the most reliable clause
of a given set of clauses has truth value a and the most unreliable clause
has truth value b, then all the logical consequences obtained by repeatedly
applying the resolution principle (see, e.g., Robinson, NF 1965) will have a
truth value between a and b.

If we use Goguen’s implication →
4

, a detachment operation is now the
product since

υ(P →
         4

Q) . υ(P) = min(l, υ(Q) / υ(P)) .υ(P) < v(Q).

The validity of a chain of implications °, when *  is the product, may
decrease with the length of the chain.

Lastly, with υ(P ⇒ Q) = min(l, 1 − υ(P) + υ(Q)), we may observe that:

  if υ(P) = α and υ(P ⇒ Q) = 1, then υ(Q) > α;
if υ(P) = α and υ(P ⇒ Q) = 1 − e < 1, then υ(Q) = α − e

At the end of n inferences whose truth values are equal to 1− e, the truth
value of the premise being α, the conclusion has a truth value equal to

α − ne. A detachment operation for ⇒ is <. Gaines (1976b) uses →
4

 or ⇒
to explain the paradox of the bald man (if a man who has n hairs is bald,
then a man who has n + 1 hairs is still bald).

N.B.:  Conversely, given an operation * , the appropriate formal defini-
tion of ° is υ(P ° Q) = sup

x
{x, υ(P) * x < υ(Q)}. Note that when

∗ = min, ° is the Brouwerian implication →
2

; when *  = product,

° = →
4
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With so many multivalent logics and connectives, we may need some
points of view for comparison; perhaps the most interesting ones are the
compatibility with Piaget’s group, the existence of paradoxes, the presence
or lack of important structural properties, the validity of a chain of
inference, and the associated set theories.

Many authors have used the expression “fuzzy logic,” to denominate
some multivalent logics, especially L

%1
 which underlies Zadeh fuzzy set

theory. Zadeh employs “fuzzy logic,’ to designate a logic on which a theory
of approximate reasoning is based (see Section E). However, multivalent
logics may be viewed as fuzzy logics in the sense that there are no longer
only crisp truth values like 0 or l, but also intermediate ones. Lakoff (1973)
generalizes this point of view when he proposes assigning to each proposi-
tion a 3-tuple (α,β,γ) such that α + β + γ = 1 and where α, β, γ are
interpreted as degrees of truth, falsity, and nonsense, respectively. (If
n(P) = (α, β, γ), then n(L P) = ( β, α, γ).)

C.   FUZZY MODAL LOGIC

Until now there have been very few works in the domain of fuzzy modal
logics. Perhaps this is because “possibility” has been investigated in an-
other way by Zadeh (see Part II, Chapter 5). Thus, this section will be very
short, just providing what has been done. For an introduction to modal
logic, the reader may consult Hughes and Cresswell (NF 1972).

Lakoff (1973) obtained a fuzzy modal logic by adding to a set of
semantic truth functions for connectives and quantifiers the following
valuations for the modal operators h and e:

  
v(hP,  w) =  inf

wRw'
 v(P, w' )     

  
 v(eP,  w) =  sup

wRw'
 v(P,w' )

w, w′  [ W, and where n(P, w) is the truth value of P in the world w, and
R is an alternativeness (or accessibility) reflexive relation between the
“possible worlds.” W is the set of “possible worlds.” Note that the
valuations are coherent with the identity hP = L e L P,(n( L P, w) = 1 −
n(P, w)). n(hP, w) is interpreted as the degree of necessary truth of P in w;
n(hP, w) = a means that the truth value of P never falls below a in any
world alternative to w. Lakoff gives the following example of a statement
that is necessarily true to a degree: “Approximately half of the prime
numbers are of the form 4N + 1.’’

Schotch (1975) has applied fuzzy set theory to modal logic in the
following way. Let us consider the relational model consisting of a binary

e.   Comments
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relation R on W (intuitively the set of possible worlds) and a valuation V
that assigns to each elementary proposition P the set of worlds in which P
is true. By definition, we have

V(LP)= W − V(P),       V(P` Q)= V(P)>V(Q)

                V(eP)= {w[W,wRw ′and w ′[ V(P)},

V(hP) = {w [ W, wRw ′implies w ′[ V(P)},

which is coherent with hP = L e L P.
This model can be fuzzified in two ways: using fuzzy valuations and/or

fuzzy relations.
First, let us consider the case of a fuzzy valuation V Ṽ  assigns to each

elementary proposition P the fuzzy set Ṽ (P) of worlds in which P is more
or less true. 

  
m

Ṽ(P)
(w) is the degree to which P is true in the world w [ W.

Ṽ  is extended to any wff by

Ṽ(LP) = Ṽ(P)    
  
(m

Ṽ(LP)
(w) =  1- m

Ṽ(LP)
(w)),

      Ṽ(P`` Q) = Ṽ(P)ùṼ(Q)             
(m

Ṽ(P`Q)
(w)) = min( m

Ṽ(P)
(w)m

Ṽ(P)
(w)).

    
m

Ṽ(e P)  is the (two-valued) characteristic function of the set {w [ W,
wRw′ and 

  
(m

Ṽ(P)
= (w' ) ≠ 0}and     

m
Ṽ(hP)  is the two-valued characteristic

function of the set {w [ W, wRw′ implies   
m

Ṽ(P)
(w' ) = 1}.

Let us suppose now that the valuation is no longer fuzzy but that R is a
fuzzy relation. V(eP) is now defined as

V(eP) = {w [ W,   mR(w,w′) = 1 and w′ [ V(P)}.

Several kinds of stipulations may be imposed on R according to the
classical modal system we want. Moreover, another modal operator, de-
noted M, may be defined:

V(MP) = {w [ W,   mR(w,w′) Þ 0 and w′ [ V(P)}.

MP means “it might be possible that P.’’ Then we have eP°MP;
LM L P°hP. Note that MP Þ eeP.

More generally, we may consider more baroque models where the
valuation and the relation are fuzzy (see Schotch, 1975).

Remark Dana Scott has suggested (see Lakoff, 1973) a method for
relating modal and many-valued logics. Let V(P, i) = 1 stand for “P is true
in the valuation i,’’ i.e., v(P) > i, i [ [0, 1]. The alternativeness relation R
is here >. The set of valuations is constrained by: if V(P, i) = 1, then ;j,
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i r j, V(P, j) = 1. Valuations for L, `, ~ are now defined as

V(L P, i) = 1 iff not(V(P, 1 – i) =1)

V(P `, Q, i) iff V(P, i) = 1  and   V(Q, i) = 1

V(P ~, Q, i) iff V(P, i) = 1  or   V(Q, i) = 1

D. FUZZY-VALUED LOGICS

A fuzzy-valued logic is a many-valued logic where the truth space is the
set of the fuzzy numbers (i.e., convex normalized piecewise continuous
fuzzy sets) on the real interval [0, l]; i.e., the truth value of a proposition is
a fuzzy number whose support is included in [0, 1]. Such fuzzy numbers
may model linguistic truth values whose names are “true,” “very true,”
“borderline,” “false,” etc. Figure 6 sketches the shape of their membership
functions.

Fuzzy-valued logics clearly underlie type 2 fuzzy set theories where
grades of membership are fuzzy numbers (see II.1.G.d and II.2.C.b). Thus,
the semantic truth functions for the connectives of negation, conjunction,
and disjunction (underlying -, C, and D respectively) are

~υ(LP) = 1 * ~υ(P), ~υ(P ` Q) = min (~υ(P), ~υ(Q)),
~υ(P ~ Q) = max(~υ(P), ~υ(Q)),

where ~υ(P) is a fuzzy number on [0, 1]. For the definition and methods for
rapid computation of * min , max, the reader is referred to II.2.B.d and
lI.2.B.e.

~υ(LP) is generally called the antonym of ṽ(P). Thus, “false” will be
defined as the antonym of “true.”

Figure 6.
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The other semantic truth functions for the connectives introduced in B.b
can be extended (by means of the extension principle) in the same way; for
instance,

~υ(P → Q) = max(1 * ~υ(P), ~υ(Q)),

~υ(P ⇒ Q) = min (1,1 * ~υ(P) % ~υ(Q)),

~υ(P > Q)  = min (1,~υ(P) % ~υ(Q)),

~υ(P ⇔ Q) = abs(~υ(P) * ~υ(Q))

(for % and abs, see II.2.B.d).
It is clear that with these extended valuations, ~ and ` are still

commutative, associative, idempotent, mutually distributive, and satisfy
absorption and De Morgan laws; negation is still involutive; and

~υ(P ` Q) % ~υ(P ~ Q) = ~υ(P) % ~υ(Q),

provided that ;P,Q,~υ(P),~υ(Q) are fuzzy numbers, i.e., convex and nor-
malized. However,

~υ[(P ` Q) ~ (L P ` L Q)] 7Þ~υ[(L P ~ Q) ` (P ~L Q)],
~υ[(P ` Q) ~ (L P ` L Q)] 7Þ~υ[(L P ~ Q) ` (P ~L Q)].

Remark 1 The meaning of “not true and not false’’ is approximately
that of “borderline.’’ However, the membership function of “not true and
not false’’ has a maximum whose value is different from 1. (µ

not true and not

false
 = min (l − µ

true
, 1 − µ

false
).) After a renormalization we get a fuzzy

number that looks like “borderline.’’ Thus, the classical fuzzy set opera-
tions <, >, # can be used in the same way to build new linguistic truth
values; on the contrary, max, min , and 1 *(.) must be used to valuate
composite propositions whose elementary propositions are only fuzzily
valued.

2 Other connectives may be worth considering, particularly in a fuzzy-
valued logic. For instance, let m be the unary connective defined in a
multivalent logic by

υ(m P) = [v(P)]m    m [R+

m will be called a modulator because it modulates the affirmation of the
proposition P. If m > 1, mP is a more demanding (stronger) version of P,
so its truth value is less than v(P); conversely if m < I, mP is a relaxed
version of P and has a greater truth value. The extension of m to
fuzzy-valued logics is rather straightforward because it underlies the mth
power operation for a type 2 fuzzy set (see II.2.C.c). For example, for
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m = 2, ~υ(2P) = ~υ(P)() ~υ(P). Notice that if ~υ(P) = true, ~υ(2P) Þ very true
where “very true” is modeled by the second power of the type 1 fuzzy set
“true”on [0, 1], i.e.,m

very true
(x) = [m

true
(x)]2,;x[ [0,1] (see II.1.B.f) “Very

true” has a mean value equal to I but not ~υ(2P). (For a discussion of the
modeling of hedges such as “very,” see IV.2.B.b.) “Very true” is more
precise (less fuzzy) than “true”; ~υ(2P) is less true.

The problem of inference is less straightforward in fuzzy-valued logic
than in multivalent logic, i.e., find ~υ(Q) when you know ~υ(P) and
~υ(P°Q) where ° is some implication connective. For instance, if ~υ(P)
= α̃  and ~υ(P ⇒ Q) = υ(LP < Q) = 1 *   ̃e , then ~υ(Q) is not a solution of
the equation

1 *   ̃e= min (l, 1 * α̃% x̃ ),

which is equivalent to   ̃e  = α̃* x̃  if µ  ̃e (0) Þ 0 because in the equation, when
  ̃e  is given, the fuzzier ̃α  is, the crisper (the less fuzzy) is x̃ , and it is
counterintuitive that the less precisely defined ~υ(P) is, the more precisely
defined is ~υ(Q). The reason is that in fuzzy equations implicit definitions
of variables are not equivalent to the corresponding explicit ones (see
II.2.B.h)which are usually the only valid ones. Thus, we must directly
fuzzify the nonfuzzy result of the above eq̃uation and state ~υ(Q) = α̃*  ̃e .

In conclusion, we notice that in a chain of approximate inferences, truth
and precision progress in the same sense, conclusions are always less
precise and less true than premises: α̃*  ̃e . is smaller than ̃α  (see II.2.B.g)
and also more fuzzy.

E.   APPROXIMATE REASONING    (Zadeh, 1977a)

a.  Introduction

“Informally, by approximate or, equivalently, fuzzy reasoning we mean
the process or processes by which a possibly imprecise conclusion is
deduced from a collection of imprecise premises. Such reasoning is, for the
most part, qualitative rather than quantitative in nature and almost all of it
falls outside of the domain of applicability of classical logic” (Zadeh,
1977a).

In Section B we were interested in manipulating statements such as
P≡ “X [ Â ’’ ( X) is a prescribed element of U) where Â  is a fuzzy subset
on a universe U and v(P) = m Â  (X) (for example, P ≡ “John is a tall man, ”
i.e., John belongs to the fuzzy set Â  of tall men). In section D υ(P) was
allowed to be a fuzzy number and was denoted ṽ(P). In this section we
consider statements like P ≡ “X is A” where A is a fuzzy set on T inducing
a possibility distribution (see II.5.B.a) π

h(X)
 = m

A
. h is an attribute of X
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and T is the measurement scale of h. For example, in “X is tall,”
A = “tall” is modeled by a fuzzy set on the universe T of heights. In fact,
the statement can be viewed as equivalent to an infinity of statements
P

t
 ≡ “ t is the height of X’’ with υ(P

t
) = m

A
 (t), t [ T, since t belongs to the

fuzzy set A of large heights. If t is a fuzzy height t̃  (for instance,
“approximately 5,’”), υ(P t̃ ) = II(t) = hgt(A > t̃ ) where II is the possibility
measure associated with m

A
. In the following the attribute symbol is

omitted, and we write π
X
 instead of π

h(X)
, for short.

In order to perform approximate reasoning with statements similar to
“X is A,” but more complex, we need translation rules so as to model
them as possibility distributions, modifier rules in order to perhaps trans-
form them in semantically equivalent possibility distributions, and rules of
inference to deduce new possibility distributions. We are not interested
here in the question of retranslating these possibility distributions in
natural language; for this problem, called “linguistic approximation,” see
IV.2.B.e. This approach was initiated by Bellman and Zadeh (1977) and
developed by Zadeh (1977a).

b.  Translation Rules

By translation rules is meant a set of rules that yield the translation of a
modified composite proposition from the translations of its constituents,
e.g., from P → π

X = m
A
 and Q → π

y
 = m

B
 deduce P ` Q → π

(x, y)
. The

translation of a proposition must be understood as its associated possibility
distributions. There are four types of translation rules.

Type 1:  modifier rules for simple propositions: Given the proposition
P ≡ “X is A”  such that π

y 
= m m

m m
x —see

IV.2.B.b).
Type 2: composition rules: Composition rules pertain to the transla-

tion of a proposition P that is a composition of propositions Q and R, such
as conjunction, disjunction, implication. For instance: “If X is A, then Y is
B” → π

(x, y)
 = m

c ( A ) .
L >

m
( A ) . c ( B )

( t , t ′ ) = m i n ( 1 , 1 − m
A
( t ) + m

B
( t ′ ) ) w h e r e c d e -

notes the cylindrical extension and t [ [
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First, knowing A and F, fuzzy sets respectively on T and on [0, 1], find
the possible density functions that are compatible with the statement “FX
are A.” Let ρ be a density function over the universe T of A. The
proportion Prop(A) of Xs that are A is given by the cardinality of A using
e −∞

t ρ(s) ds as a measure on T (see II.1.D.a):

Prop(A) = e
T
m

A
(s)ρ(s)ds

In fact, the proportion of Xs that are A is fuzzily restricted by F; hence we
can induce a fuzzy restriction on the density functions by stating (Zadeh,
1977a)

π(ρ) = µF  
T∫ µ A(s)ρ(s)ds.





π(.), the translation of “FX and A,” is a possibility distribution on the
density functions.

When the universe U to which X belongs is finite—and sufficiently small
—we may not use a density function, but directly induce a possibility
distribution on the membership values of the elements of U in the fuzzy set
Â  of Xs that are A:

µF

Uµ
Â
(X)∑

U









 = π( Â)

(Bellman and Zadeh, 1977).
The second problem is to find F from knowledge of a density function ρ

on T = R made out of a set of measurements {h(X), X [ U} and of a
fuzzy bound B[~3(R). The question is, What is the fuzzy proportion F of
Xs such that h(X) is greater than or equal to B? For instance, U is a set of
men and h(X) the height of X, B is a fuzzy height. F is given by the
integral of ρ over the fuzzy interval (B, + ∞) (see II.4.C.b):

µF (z) =     
t,∫t

+∞ ρ(s)ds=z

sup µB(t)

Note that the fuzzy interval (B, + ∞) corresponds to the fuzzy set A in the
statement “FX are A.”

More generally, we can translate propositions like “FX in C are A”
where C is a fuzzy set on U acting as a fuzzy restriction on the values of X.
For instance, F = “many,” C is the fuzzy set of the tall men, A means
“fat”: “many tall men are fat.” We are interested in the proportion of X
that are A in C, i.e. (see II.1E.c.β)

| Â > C| / |C| = Prop(Â  in C).
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The associated possibility distribution is.

µ( Â ) = µ
F
(| Â >C|/|C|).

   Type 4:   qualification rules:    Among pertinent qualifications for propo-
sitions Zadeh (1977a) considered three of them in particular:

   linguistic truth qualification,
   linguistic probability qualification,
   linguistic possibility qualification.

(i) Truth qualification. A truth-qualified version of a proposition
such as “X is A’’ is a proposition expressed as “X is A is t,’’ where
t is a linguistic truth value. We must not confuse t with the
linguistic truth value of a proposition in a fuzzy-valued logic. Here
t is a local linguistic truth-value (see Bellman and Zadeh, 1977)
rather than an absolute one: t is defined as the degree of compati-
bility of the proposition  X is A’’  with a reference proposition “X
is R’’ (see II.2.A.e.β):

  
µt (z) =     

z = µ A(t)
sup µR(t).

Here we want to find R from knowledge of A and t ; the greatest R
is

           µR = µt o µ A.

The translation of the proposition “X’’ is A is t’’ is thus the
possibility distribution induced by R. Note that when t is defined
as m

t
(z) = z ;z [[0, 1] (Zadeh calls such a truth value “u-true’’),

we have R = A.

(ii) Probability qualification. A probability-qualified version of a
proposition such as “X is A’’  is a proposition expressed as “X is A
is 1’’ where 1 is a linguistic probability value such as “likely,’’
“very likely,’’. . . . This may be interpreted as “P(A) is 1’’ where
A is viewed as a fuzzy event whose probability is P(A). Using the
definition of II.5.C.a, we get

P(A) =  
T∫ µ A(t) p(t)dt.

where p is a probability distribution. Since P(A) is fuzzily re-
stricted by λ, the probability distribution is fuzzily restricted by the
possibility distribution

π( p) = µλ  
T∫ µ A(t) p(t)dt
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This result is formally equivalent to that of the quantification
rule (type 3).

The problem of finding 1 from knowledge of the fuzzy event A
and the probability distribution p was already solved in II.5.C.b,
provided that A is modeled as a fuzzy real interval (B, C).

(iii) Possibility qualifications. A possibility-qualified version of a
prop-  osition such as “X is A”, is a proposition expressed “X is A is ω”
where ω is a linguistic possibility value such as “possible,”
“very possible,” “almost impossible,”. . . . ω is viewed as a fuzzy re-
striction on the nonfuzzy possibility values II(A) of the fuzzy event
A. Recalling that

II(A) = sup min(µ
A
(t), pi(t)),

t [ T

        where pi(⋅) is the possibility distribution associated with the possi-
bility measure II(⋅), we get

π(pi) = mω sup min(m
A
(t), pi(t)) .

t [ T

     The translation of “X is A is ω’’ is a possibility distribution on
possibility distributions—which is analogous to (ii).

An alternative interpretation of the proposition “X is A is ω’’
where ω = “α-possible’’ is “It is α-possible that X is A,’’ i.e., “X is
A’’ is contingent to a certain degree α. When α = 1, the qualifica-
tion rule changes A into A+ such that m

A
+ (t) = [m

A
(t), 1] with the

understanding that the possibility that t qualifies X may be any
number in the interval [m

A
(t), 1]. Note that A+ is an interval-

valued fuzzy set (Φ)-fuzzy set). m
A
 + (t) is a “degree’’ of possibility of

membership of t in A. More generally, if a± 1, Zadeh (Reference
from IV.2, 1977b) proposes the formula

m
A+ (t) = [min(α, m

A
 (t)), min(1, 1 − m

A
(t) + α)] .

Sanchez (1978) prefers

m
A+ (t) = [min(α, m

A
(t)), max(1, 1 − m

A
(t), α)] .

    Both formulas coincide for α = 1 and α = 0 (“impossible’’). Any-
way, according to Zadeh (Reference from IV.2, 1977b) these rules
should be regarded as provisional in nature. Their relationships to
the theory of possibilities and (fuzzy) modal logic have not yet
been made clear.
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where ant F is the antonym 1 * F of F.

C.  Modifier Rules (Zadeh, 1977a)

α. Semantic Equivalence and Entailment

Let P and Q be two propositions and let π
p
 and  π

Q
 be the possibility

distributions induced by P and Q owing to the above translation rules. P
and Q are said to be semantically equivalent iff  π

p
 = π

Q
, which is denoted

by P⇔Q. This definition could be weakened by means of approximate
equalities (II.1.E.c).

While the concept of semantic equivalence relates to the equality of
possibility distributions, that of semantic entailment relates to inclusion.
More specifically, denoting P semantically entails Q by P ⇒ Q, we have

P ⇒ Q     iff     π
p
 # π

Q

β.  Modifier Rules for Propositions

The modifier rule that was stated earlier for simple propositions provides
the basis for the formulation of a more general modifier rule that appliesto
propositions translated by rules of type l, 2, 3, and 4.

This general rule is: if m is a modifier and P is a proposition, thenmpis
semantically equivalent to the proposition that results from applying mto
the possibility distribution induced by P.

  (i) Simple propositions.  m(“X is A’’) ⇔“X is mA’’ which is exactly a
    type 1 translation rule. Examples:

   m = “not,’’           m
mA

 = 1 − m
A

m = “very,’’         m
mA

 =   mA
2 .

N.B.: m(“X is m′A’’) ⇔“X is m(m′A)’’ ⇔ mm′(“X is A”).
(ii) Composed propositions. m(“X is A and Y is B” )⇔(X, Y) is

     m(A 3 B). Examples:
  not(“X is A and Y is B” ) ⇔ “X is not A or Y is not B”.
very(“X is A and Y is B”) ⇔ “X is very A and Y is very B”.

(iii) Quantified propositions.  m(“FX are A”)⇔“(mF)X are A.”  Exam-
ple: m=“not.” This formula can be employed here to generalize
the standard negation rule in predicate calculus:

L(;x)P(x)     ⇔      ('x) L P(x).

To see this connection, we first assert the semantic equivalence

“FX are A” ⇔ ” (ant F)X are not A”
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Proof:

  
p(ρ) = µF T

µ A(s)ρ(s)ds∫



 = µF 1−

T∫ 1− µ A(s))ρ(s)ds(





because 
T∫ ρ(s)ds = 1.  Q.E.D.

Thus, we have
“(not F)X are A ”   ⇔   “ant(not F)X are not A ”

which for F = “all” gives
“not all X are A”    ⇔    “some X are not A”

with “some” defined as ant(not “all”), meaning “at least some.”
(iv) Qualified propositions. We consider here only truth-qualified

propositions:
m(“X is A is t”)     ⇔     “X is A is mt.’’

Example: m = “not,’’ t = “true,’’
not(“X is A is true”)       ⇔    “X is A is not true.”

On the other hand, we have
“X is not A is t”    ⇔    “X is A is antt.”

where if t = “true,” antt = “false.”
N.B.: For possibility-qualified propositions, we have:

not(X is A is 1-possible) ⇔ “X is A is impossible”;
very(X is A is 1-possible)⇔ “X is very A is 1-possible”;

because

;t[T, m
(A+)

(t) = [0, 1− m
A
(t)];

m
(very A)+

(t) = 
  
µ A

2 (t),1[ ] = µ A(t),1[ ]( µ A(t),1[ ] = m
(very A)+

(t).

γ.  Example of Inference with Modifier Rules

Consider as a premise the proposition “FX are A.’’ We want to answer

the question, How many X are mA? where µ
mA

 = µ A
m  (e.g., m = 2, mA

means “very A’’). The translation of the premise is a possibility distribution

  
p(ρ) = µF T

µ A(s)ρ(s)ds∫



 .

The proportions of X that are mA is

Prop(mA) = µ A
m

T∫ (s)ρ(s)ds.

-
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What we want to find is a quantifier F′ such that “F ′X are mA’’ is the
answer to the question. We know only p(ρ) and not precisely ρ, so p(ρ)
induces by the extension principle a possibility distribution on the values
of Prop(mA), which is m

F′ such that

µ F' (z) =  
ρ

sup π ρ( ) subject to µ A
m

T∫ (s)ρ(s)ds = z.

In the finite case this formula becomes (see b, type 3)

  

µ ′F z( )  =
∑Uµ Ãm x( )  = z( U  

sup
  

  

π Ã( )  =
∑Uµ Ãm x( )  = z( U  

sup µ F

U µ Â(X)∑
U






.

Assume m
F
 is increasing on [0, 1], for instance F = “most’’ and m = 2. Then

the maximizing values of µ
Ã

(X) are µ
Ã
(X) = z  ;X. Hence m

F'
(z)

= m
F'
( z ) or F' = F ( F. This example was given in Bellman and Zadeh

(1977).
It can be checked that “most X are A’’ semantically entails “(most

( most) X are very A’’ (Zadeh, 1977a): Let p' be the possibility distribu-
tion associated with the last proposition; we have

      
p' (ρ) = µ F ( F µ A

2

T∫ (s)ρ(s) ds





= µ F µ A
2

T∫ (s)ρ(s) ds






    
> µ F µ A

2

T∫ (s)ρ(s) ds



 = p' (ρ)

using Schwarz's inequality and the monotonicity of m
F
.

N.B.: Semantic equivalences or entailments are said to be strong (Za-
deh, Reference from IV.2, 1977b) as soon as they hold, whatever the fuzzy
sets involved in the concerned propositions may be.†

δ.   Remark

Modifiers can be applied to questions such as, What is the fuzzy
proportion F of X such that h(X) is greater than or equal to B?, where h
measures the Xs and B is a fuzzy number on R considered as a fuzzy
bound, i.e.,

  

mF (z) =      sup
t, t

+∞ρ(s)ds=z∫
          mB(t)

            
†For instance, “John is very tall”⇒“John is tall” is a strong semantic entailment, but “John is very

tall” ⇒“John is not short” depends on the definitions of tall and short, and hence does
not represent a strong semantic entailment.
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Figure 7

Figure 8

Using, for instance, the modifier “not,” we can change this question into
the semantically equivalent one, “What is the fuzzy proportion F* such
that h(x) is less than or equal to B? We have

µF* z( ) = sup
t, −∞ρ s( ) ds = zt∫

µ B t( ) = µF 1 − z( ) = µant F( ) z( ).
See Fig. 7. Note that the complement of the fuzzy interval C = (B, + `) is

taken as (− `, B) which is different from C . C is a fuzzy set of intervals of
the form [t, + `) such that µC ([t,+ ∞)) = µB(t).  C* = (− ∞, B)  is a kind
of antonym for (B, + `) = C since µC*((− ∞, t]) = µB(t).  C* = (t + ∞)).

Consider now the proposition “FX are A’’ where A is the fuzzy set on
T = R of numbers greater than B in the sense that ;t [ R, m

A
(t) =

sup
x < t

 m
B
(x). Its shape is shown in Fig. 8. A is similar to (B, + `) = C.

When “FX are A’’, is translated by p(r), it is semantically equivalent to
“(ant F)X are A .’’ In the alternative model “FX are greater than B’’ is the
same as ”(antF)X are less than B.’’ The fuzzy set that is similar to
(− `, B) is A* such that m

A*
(t) = sup

x > t
 m

B
(x) and not A !

d.   Rules of Inference (Zadeh, 1977a)

The main rules of inference in approximate reasoning are the projection
principle, the particularization / conjunction principle, and the entailment
principle. Once combined, the first two lead to generalized modus ponens.
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a. Projection Principle

Let π ( X
1

,  .  .  .  ,  Xn )be a possibility distribution over a universe T
1
3 ⋅ ⋅ ⋅ 3

T
n
. π ( X

1
,  .  .  . ,  Xn )  is associated with a fuzzy relation F in T

1
 3 ⋅ ⋅ ⋅ 3 T

n
 that

defines the fuzzy restriction F(h
1
(X

1
), . . . , h

n
(X

n
)) on the values of

h
1
(X

1
), . . . , h

n
(X

n
), where h

i
 denotes an attribute of X

i
. π ( X

1
,  .  .  .  , Xn ) = F is

a translation of a proposition P. Let s = (i
1

, . . . , i
k
) be a subsequence of

(1, . . . ,n) and π X(s)
= proj[F; Ti1

3 ⋅ ⋅ ⋅ 3 Tik ] (see II.3.A.a). π X(s)
( is the

marginal possibility distribution of (hi1
(Xi1

),  .  .  .  ,  hik
(Xik

)).  Let Q be a
retranslation of the possibility assignment equation π X(s)

= proj[F;
Ti1

3 ⋅ ⋅ ⋅ 3 Tik ], then the projection principle asserts that Q may be
inferred from P.

For instance, n = 2, F = A 3 B where A means “tall” and B means
“fat’’, from P = “John is tall and fat,’’ we infer “John is tall,” provided
that hgt(A) = hgt(B).

b.   Particularization/Conjunction Principle

The particularization of π ( X
1

,  .  .  .  , Xn ) is its modification resulting from the
stipulation that the possibility distribution π X(s)

is a fuzzy set G on
Ti1

3 • • • 3 Tik . The result is a possibility distribution

  
π (X1,  .  .  .  ,  Xn )

π
X(s)= G











 = F > c(G)

where c(G) is the cylindrical extension of G. From P translated in
π (X1,  .  .  .  , Xn ) = F and Q translated by π X(s)

= G, we can infer R translated
by π (X1,  .  .  .  , Xn )   = F > c(G) .

The particularization principle may be viewed as a special case of a
somewhat more general principle, which will be referred to as the conjunc-
tion principle. Specifically, assume that P is translated by π (Y1,  .  .  .  ,Yk ,
Xk + 1,  .  .  .  , Xn ) = F and Q translated by π (Y1,  .  .  .  ,  Yk,Z k + 1,

 .  .  .  , Zm ) = G, then from
P and Q we can infer R translated by

π (Y1,  .  .  .  ,  Yk, Z k + 1
,  .  .  .  , Zm )   = c(F) > c(G),

i.e., the join of F and G (II.3.A.a).

g.   Entailment Principle

Stated informally, the entailment principle asserts that from any proposi-
tion P, we can infer a proposition Q, if the possibility distribution induced
by P is contained in the possibility distribution induced by Q. For
instance, from P = “X is very large” we can infer Q = “X is large.”

d.  Compositional Rule of Inference

The compositional rule of inference consists in the successive application
of the particularization / conjunction principle followed by that of the
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of the particularization / conjunction principle followed by that of the
projection principle. Let P be a proposition translated by π

(x, y)
= F and

Q translated by π
(y, z)

= G. We can infer a proposition R translated by
π

(x, z)
= F   oG where   o denotes sup-min composition (see II.3.A.a).

An important special case of the compositional rule of inference is
obtained when P and Q are of the form P = “X is A′’’, Q = “If X is A, then
Y is B.’’

Propositions such as Q are translated by means of type 2 translation
rules, after having made the choice of an implication. For instance, Q is
translated by π

(x, y)
= c (A ).c (B).

From P and Q we can infer the proposition Y is B′ where B′ = A′   o
c (A ) . c (B)). , for instance. Using the results of B.c, we can state the
following chains of inclusions:

A′ 8 (A ⇒ B) $ A′ 8 (A A B) $ A′ 8 (A → B)

3

$ A′ 8  (A → B) $ A′ 8  (A 3 B);

4                              2

A′ 8 ( A ⇒ B) $ A′ 8 (A → B ) $ A′ 8 (A → B ) $ A' 8 (A 3 B);

 2               1

A′ 8 (A ⇒ B) $ A′ 8 (A → B).

N.B.:  In the above chains the implication symbols have been abusively
used as set theoretic operators and the cylindrical extensions are omitted.
The most valid inferred proposition is “Y is A′ 8 (A ⇒ B)’’ since it is the
fuzziest one!

2.  Very recently, Diaz (1978) has proposed another form of translation
“If X is A, then Y is B’’ :

    

µ (X, Y ) =
c(A)< C(B)    if  µ A(t) < µ B(t' ),    (t,t' )[ T  3 T'  

c(A)< C(B)    if  µ A(t).µ B(t' ),     (t,t' )[ T  3 T'







T and T ′ are the universes of A and B, respectively.
Schematically, the inference can be pictured as:

P = “X is A”
Q = “If X is A, then Y is B”
R = “ Y is A′ 8 (c(A) ° (B))”

where ° denotes any of the introduced implications. This inference
scheme is called generalized modus ponens.
In the classical modus ponens A′ = A and the inferred proposition is “Y
is B.’’ However, it can be checked here that generally, setting A′ = A, we



184III.1. Fuzzy Models and Formal Structures

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

get B′ = A 8 (c(A) ° c(B)) Þ B. For instance, assuming A, A , and B are
normalized fuzzy sets, m

A
 and m

B
 continuous, we get for

°=⇒,   m
B'
(t')= 1

2
 (1 + m

B'
(t' ))     ;t' [ T'

°=→,      µB' (t' ) = µB' (t' )    ;t' [ T'

°=→,     
  

µB' (t' ) 
= µB' (t' )            if       µB' (t' ) > 1

2
  

= 0.5            otherwise.





When A is crisp, we recover B'= B. However, when A is fuzzy “the
implicit part of Q ,’’ namely “if X is A , then Y is unrestricted, overlaps the
explicit part, resulting in an interference term which vanishes when A is
nonfuzzy’’ (Bellman and Zadeh, 1977).

Remarks 1 A rather funny particular case of generalized modus ponens
is the well-known rule of three. The classical rule is, “If X equals a, if X
equals a implies Y equals β, then Y equals (β / α).a. This rule can be
extended using for instance, positive fuzzy numbers, namely ã , ã ,   b̃ . The
result of the inference is then “Y equals ã ((  b̃/ ã )’’ where “(’’ and
“/,, denote here extended product and division. Defining

ã°  b̃         
µ

α̃a b̃
(X,Y ) = µ

b̃/α̃
(Y / X),       X ≠ 0

we have

ã((  b̃/ ã ))= ã  8 (  b̃ ° ã )

Thus, generalized modus ponens may be viewed as a generalized interpola-
tion.

2 If  A′, A, and B are type 2 fuzzy sets, the compositional rule of

inference can be readily extended by means of a max · min  (more generally
a sup · min ) composition (see II.3.F.c).

A generalized modus ponens may involve several conditional proposi-
tions such as “If X is A

i
, then Y is B

i
,”  i = 1, n. The procedure for making

inferences is then to aggregate the n rules (for instance, by performing their
union) into a binary fuzzy relation R; the inferred proposition is “Y is
A + R.”

Some interesting questions, which have not been completely solved yet
are: consistency of the rules, nonredundancy of the set of rules, and the
converse problem, i.e., determining the rules from knowledge of R (see
Tong, 1976). Lastly, the compositional rule of inference has been extended

4

† Hence A and B cannot be crisp!
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to possibility-qualified propositions of the form “X is A is 1-possible” (see
b, type 4, (iii)) by Sanchez (1978). Consider the inference scheme:

“X is F is l-possible” translated by p
X

= F+;
“(X, Y) is G is 1-possible” translated by p

(X, Y)
= G+ then “Y is

F+ + G+”;

where F+ is a F-fuzzy set, such that m
F+(X) = [m

F
(X), 1], + is the

max · min  composition of F-fuzzy relations (see II.3.F.c). Sanchez has
shown that (F + G)+ = F+ + G+ so that “Y is F+ + G+ ” is semantically
equivalent to “Y is F + G is 1-possible.” We have also F + G+ = (F +

G)+ iff F is normalized, and F+ + G = (F + G)+ iff proj[G; V] = V
where V is the universe of Y. We have supposed here h(X) = X, i.e.,
U = T.
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Chapter 2
DYNAMIC FUZZY SYSTEMS

The idea of fuzzy systems appeared very early in the literature of fuzzy
sets; it was originated by Zadeh (1965). Research on fuzzy systems seems
to have developed in two main directions. The first is rather formal and
considers fuzzy systems as a generalization of nondeterministic systems.
These have been studied within the same conceptual framework as classi-
cal systems. This approach has given birth to a body of abstract results in
such fields as minimal realization theory and formal automata theory,
sometimes expressed in the setting of category theory. These results are
sketched in Sections B and C of this chapter. Section D gives two models
of deterministic systems in a fuzzy environment. Section E deals with the
practical computation of linear systems whose parameters are fuzzy num-
bers. It does not seem that the abstract theory of fuzzy systems has been
applied yet to the study of real processes. Perhaps this situation is because
this formal approach is based on the implicit idea that crisp statements can
still be asserted to describe fuzzy behavior. This idea seems to contradict
Zadeh’s rationale in favor of linguistic models and approximate reasoning.
The second direction of research is the linguistic approach to fuzzy
systems, in which a fuzzy model is viewed as a linguistic description by
means of fuzzy logical propositions. A first extensive outline of the
linguistic approach was given by Zadeh (Reference from III.3, 1973). Since
then it has been applied to the synthesis of linguistic controllers by
Mamdani and Assilian (Reference from IV.4) followed by many others.
This chapter is devoted to a formal approach to fuzzy systems. Linguistic
aspects are mainly discussed in Part IV and are closely related to the

188
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theory of approximate reasoning (Section E of Chapter 1). Various topics,
including identification and validation of models, are gathered in Section
F. Let us begin this chapter with general considerations about complexity
and fuzziness.

A.   COMPLEXITY AND FUZZINESS IN SYSTEM THEORY

a.    Complex Systems and the Principle of Incompatibility

Zadeh (1972) pointed out that “excessive concern with precision has
become a stultifying influence in control and system theory, largely be-
cause it tends to focus the research in this field on those, and only those,
problems which are susceptible of exact solutions.”

Complexity in systems stems from too large a size and / or difficulty in
gathering precise information or data to describe their behavior. Precise
models of complex systems are often mathematically intractable. Again
quoting Zadeh (1972): “The conventional quantitative techniques of sys-
tem analysis are intrinsically unsuited for dealing with humanistic systems
or, for that matter, any system whose complexity is comparable to that of
humanistic systems.”

The deep reason for this inadequacy can be summarized in what Zadeh
called the principle of incompatibility: “Stated informally, the essence of this
principle is that as the complexity of a system increases, our ability to
make precise and yet significant statements about its behavior diminishes
until a threshold is reached beyond which precision and significance (or
relevance) become almost mutually exclusive characteristics” (see Zadeh,
Reference from III.3, 1973). Partial precise information is useless as long
as other important aspects of the system cannot be precisely described.

The determination of a satisfying model for a complex process is a
matter of approximation. More specifically, when complex systems are
considered, there is no longer a sense in which a model must best fit the
data. The problem is “that of determining those models that are as good as
possible in that no simpler or equally simple model is a better approxima-
tion to the data” (Gaines, 1977). Such models are termed admissible.
Gaines (1977) formulates the general system identification problem as
follows. Let B be a set of possible observed behaviors and M be a set of
models, Ord

M
 is the set of all partial order relations on M and < is a

specified, particular order relation. Let f be a mapping from B to Ord
M
.

;b [ B, f(b) is denoted <
b
. The relation < is supposed to rank the

models with respect to complexity. Note that there is a set of minimal
models rather than a unique minimum. <

b
 ranks models with respect to
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the quality of approximation of behavior b. The admissibility relation <
b
*

on M is defined by

;m,n [ M,  m <
b
*n iff m < n  and  m <

b
n;

i.e., m <
b
*n iff m is neither a more complex nor a worse approximation of

b than n. The admissible models of b are the minimal elements of M in the
sense of <

b
*. The complexity of a model depends mainly on its size when

its type is given, but this notion remains more or less arbitrary. So are
measures of the quality of approximation. Some of these will be hinted at
in Section F, which deals with validation of fuzzy models.

b.    Fuzzy Systems

A system is viewed here has a set of relations between measurable
attributes (i.e., inputs and outputs). The system is considered over a given
period during which inputs, outputs, and relations may change. A system
will be called fuzzy as soon as inputs or outputs are modeled as fuzzy sets
or their interactions are represented by fuzzy relations. Usually, a system is
also described in terms of state variables. In a fuzzy system a state can be a
fuzzy set. However, the notion of a fuzzy state is quite ambiguous and
needs to be clarified. Note that generally a fuzzy system is an approximate
representation of a complex process that is not itself necessarily fuzzy.
According to Zadeh, the human ability to perceive complex phenomena
stems from the use of names of fuzzy sets to summarize information. The
notion of probabilistic system corresponds to a different point of view: all
the available information at any time is modeled by probability distribu-
tions, built from repeated experiments.

A fuzzy system can be described either as a set of fuzzy logical rules or
as a set of fuzzy equations. Fuzzy logical rules must be understood as
propositions associated with possibility distributions in the sense of l.E.
For instance, “if last input is small, then if last output is large, then current
output is medium”, where “small” is a fuzzy set on the universe of inputs,
and “medium” and “large” are fuzzy sets on the universe of outputs. Such
linguistic models will be presented later (see IV.2 and IV.4). Fuzzy equa-
tions may provide a representation for systems having fuzzy parameters,
fuzzy inputs. Fuzzy constraints or goals can also be taken into account.
Note that mathematically there is no essential difference between fuzzy
equations and fuzzy logical rules. In both cases results are obtained by
sup-min composition of fuzzy relations. However, the composition is
sometimes precalculated and thus no longer explicit in the formulation.

Several situations may be encountered from which a fuzzy model can be
derived:
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there is available linguistic description that reflects a qualitative under-
standing of the process; a set of fuzzy logical rules can then be built
directly;

there are known equations that (at least roughly) describe the behavior
of the process, but parameters cannot be precisely identified;

too-complex equations are known to hold for the process and are
interpreted in a fuzzy way to build, for instance, a linguistic model;

input-output data are used to estimate fuzzy logical rules of behavior.

 Real situations may be hybrid.

B.   DISCRETE-TIME FUZZY SYSTEMS

For simplicity, we shall restrict our attention to time-invariant discrete-
time systems in which the time t ranges over integers. Time-variant fuzzy
systems seem not to have been investigated in the literature to date.

In this section a formulation of state equations of fuzzy systems is given.
The usual notions of reachability and observability are presented in the
framework of fuzzy systems.

a.   State Equatlons for Fuzzy Systems (Zadeh, 1965, 1971)

Let u
t
, y

t
, and s

t
 denote respectively the input, output, and state of a

system s at time t. U, Y, S are respectively the set of possible inputs,
outputs, and states. Such a system is said to be deterministic if it is
characterized by state equations of the form

s
t+1

 = d(u
t
,s

t
),     y

t
, = s(s

t
),     t [ N.

s
0
 is called the initial state; d and s are functions from U 3 S and from S

to S and Y, respectively.
s is said to be nondeterministic if s

t+l
 and / or y

t
, are not uniquely

determined by u
t
 and s

t
.  Let S

t+1
 and Y

t
 be the sets of possible values of

s
t+1

 and y
t
, respectively, given u

t
, and s

t
. S

t+1
 and Y

t
, may be understood as

binary possibility distributions over S and Y, respectively.

α.   Nonfuzzy Inputs

The next step is to assume that S
t + 1

 and Y
t
, are fuzzy sets on S and Y.

They can be interpreted as possibility distributions. d and s are now fuzzy
relations in S 3 U 3 S and Y 3 S, respectively. d is called the fuzzy
transition relation and s the fuzzy output map. The state equations of the
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fuzzy system are now
m

t+1s̃
(s

t+1
) = sup min(m ts̃ (s

t
,), m

d
(s

t+1
,u

t
,s

t
,)),

    s
t
[s

(1)
  m tỹ ( ty ,) = sup min(m

ts̃
(s

t
,), σµ (y

t
,s

t
)),

    s
t
[S

where ts̃ , is the fuzzy state at time t, ỹ t
 the fuzzy output at time t, u

t
 the

nonfuzzy input at time t, and s̃0 the fuzzy initial state. More compactly, we
have

  
s̃t+1 = s̃t o δut

, ỹt = s̃t o σ ,

where d
ut
 is the fuzzy binary relation of transition between states when the

input is u
t
.

The fuzzy state at time t + 1 can be expressed as a function of the fuzzy
state at time t – 1 and the input at time t – 1 and t:

  µ s̃t+1
(st + 1) = sup

st ∈S
min sup

st − 1∈S
min(µ s̃t−1

(st − 1), µδ (st , ut−1, st − 1)), µδ (st+1, ut , st )






= sup
st ∈S

sup
st − 1∈S

min(µ s̃t−1
(st − 1), µδ (st , ut − 1, st − 1), µδ (st+1, ut , st ))

= sup
st − 1∈S

min µ s̃t−1
(st − 1), sup

st ∈S
min(µδ (st ,ut − 1, st − 1), µδ (st + 1,ut , st ))






.

Hence ~st + 1
= ~st – 1

 8 (d
ut
 8 dut – 1

). More generally,

~st + 1
= ~s0

 8 (d
ut 8 d

ut – 1 8 · · · 8 d
u0

) = ~s0
 8 D

ut
      (2)

where ~s0
 is the fuzzy initial state, u

t
= u

0
u

1
. . . u, is an input string of

length t + 1, and

 m
D
(s

t + 1
, u

0
, . . . ,u

t
,s

0
) = m

D ut
(s

t + 1
, s

0
)

= sup
s1, s2 , . . . , st

min(m
d
(s

1
, u

0
, s

0
), . . . , m

d
(s

t + 1
, u

t
, s

t
))

The response function of the system s, denoted ~f
~s0

, is equal to

~yt + l
 = ~f

s0
(u

t
) = ~s0

 8 Dut
 8 s       (3)

The notion of fuzzy state may have two interpretations, which corre-
spond to different representations. First, a fuzzy state can be a possibility
distribution over S, i.e., the actual state is one of the elements of S; but
since the process behavior is partially unknown, several states of S are
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possible with a nonzero possibility degree. d and s can be then viewed as
conditional possibility distributions. For instance, m

d
(s

t+1
, u

t
, s

t
) is the

possibility for the state to be s
t + 1

 at time t + 1, knowing that the state and
the input at time t are s

t
 and u

t
, respectively. Secondly, S is a set of fuzzy

sets on a set Q of possible values for the actual states. Each element of S is
a fuzzy cluster of elements of Q; the fuzzy sets belonging to S are an
approximate covering of Q in the sense that the union of the fuzzy sets,
elements of S, is contained in Q. (in the sense of #, see II.1.E.a), but the
union of their supports is Q. For instance, Q is {0, 1, . . . , 9, 10}, S =
{small, medium, large} where

small = 1/0 + 0.9/1 + 0.7/2 + 0.5/3 + 0.3/4,

medium = 0.5/2 + 0.7/3 + 0.9/4 + 1/5 + 0.9/6 + 0.7/7 + 0.5/8,

large = 0.3/6 + 0.5/7 + 0.7/8 + 0.9/9 + 1/10.

The actual state cannot usually be precisely described and thus is
represented by a fuzzy set ~q on Q; however, in the case of a mechanical
process, the state can be sometimes precisely measured, i.e., q. The behav-
ior of the process under consideration can be directly described using Q as
a state space—which corresponds to the first point of view. In the second
point of view we use S, assumed to be built on Q, to describe the process
in a more approximate way. Any element q of Q or fuzzy sets ~q on Q may

be expressed as a fuzzy set on S(see II.1.E.c.γ):   ̃q̃ . s̃(q̃) = e
s
hgt(s > ~q) / s.

For instance, if q = 7, 7. 0.7/medium + 0.5/large; if ~q = 0.6/6 +

1/7 + 0.6/8,  ̃q̃ . 0.7/medium + 0.6/large. In this example both represen-
tations are very close because there is no essential difference between q
and ~q from the approximation point of view. d

Q
 and s

Q
, fuzzy relations on

Q 3 U 3 Q and on Y 3 Q respectively, may induce d and s on
S 3 U 3 S and on Y 3 S respectively in the following way:

m
d
(s, u, s′) = sup

q, ′q
min(m

dQ
(q, u, q′), m

s
(q), m

s′(q′)),       (4)

m
s
(y ,s) = sup

q
min(m

sQ
(y ,q), m

s
(q)).

In some situations d and s are directly obtained through a linguistic
description using names of fuzzy sets belonging to S, involved in fuzzy
conditional propositions (see 1.E). State equations can be established on S,
using formulas (4), and they are formally the same as (1). Such a fuzzy
model corresponds to an approximate (linguistic) description of a complex
system whose equations are possibly unknown. Or when they exist, their
precise solution is either quite untractable or inessential.
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β.   Fuzzy Inputs

In a more general formulation a may depend on the input and the input
may be fuzzy. Then, Eqs. (1) become

m
~st + 1

(s
t + 1

) = sup
st ∈S
ut ∈U

min(m
(s
~
u)t

(s
t
, u

t
), m

d
(s

t + 1
,u

t
, s

t
)), (5)

  m
~yt
(y

t
) = sup

st ∈S
ut ∈U

min(m
(s
~
u)t

(s
t
, u

t
), m

s
(y

t
, s

t
, u

t
)),

where (su)
t
 is a fuzzy relation on S 3 U; m

(s
~
u)t

(s
t
, u

t
) is the fuzzy counter-

part of the joint probability of s
t
 and u

t
. If the input and the state are not

interactive, then m
(s
~
u)t

(·) is separable and can be written as min(m
~st
(·),

m
~ut
(·)). (5) becomes then

     m
~st + 1

(s
t + 1

) = sup
st ∈S
ut ∈U

min(m
~st
(s

t
), m

~ut
(u

t
), m

d
(s

t + 1
, u

t
,s

t
)), (6)

m
~yt
(y

t
) = sup

st ∈S
ut ∈U

min(m
~st
(s

t
), m

~ut
(u

t
), m

s
(y

t
, s

t
, u

t
)).

Assume now a string ~u
t
 of fuzzy inputs; provided that the fuzzy inputs are

noninteractive, we have

m ~ut
(u

0
, u

1
, . . . ,u

t
) = min(m

~u0
(u

0
), . . . ,m

~ut
(u

t
));

and then, for instance,

m
~st + 1

(s
t + 1

)

= sup
so ∈S

uo, u1, . . . , ut ∈U

min(m
~so
(s

0
), m

~uo
(u

0
), . . . , m

~ut
(u

t
), m

D
(s

t + 1
, u

0
. . . u

t
, s

0
)).

N.B.:   A fuzzy system s will be said to be memoryless if the fuzzy set ~ yt

is independent of ~st
, i.e.,

m
~yt
(y

t
) = sup

ut ∈ U
min(m

~ut
(u

t
), m

s
(y

t
, u

t
)).

In (1978b) Tong has proposed the block diagram

~st

~ut
  d

e
 ~et

d
P ~st + 1

This is the feedbacklike representation of the equations

~et
= (~ st

3 ~ut
) ° d

e
,     ~ st + 1

= (~st
3 ~et

) ° d
p
.
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Note that ~ st + 1 
= (~ st  

3 [( ~ st
3 ~ ut

) ° δ
e
] ° δ

p
) Þ( ~ st

3 ~ ut
) ° (δ

e
) ° δ

p
) because

m
~ st + 1

(s
t + 1

)

= sup
st*∈S
et ∈U

min sup
st ∈S
ut ∈U

min(µ s̃t
(st ), µ ũt

(ut )µδ e
(et , ut , st ))












, µ s̃t

(st
* ), µδ p

(st + 1 , et , st
* )













= sup
st , st*∈S
ut ∈U

min µ s̃t
(st

* ), µ s̃t
(st ), µ ũt

(ut ), sup
et ∈U

min(µδ e
(et , ut , st ), µδ p

(st + 1 , et , st
* ))





≠ sup
st ∈S
ut ∈U

min µ s̃t
(st ), µ ũt

(ut ), sup
et ∈U

min(µδ e
(et , ut , st ), µδ p

(st + 1 , et , st ))




 ,

which is the membership function of (~ st
3 ~ut

) ° (δ
e
 ° δ

p
).

b.    Reachability, Observability of Fuzzy Systems

α.    Reachability

We consider here the extension of very well-known notions of systems
theory to time-invariant discrete-time fuzzy systems. Denoting by U* the
set of finite input strings, a system is classically said to be reachable from
s

0
 iff ;s [ S, 't,'u

t
 = u

0
u

1
 . . . u

t
 such that D(u

t
, s

0
) = s where D(u

t
, s

0
)

= d[u
t
, D(u

t – 1
, s

0
)] and D(u

0
, s

0
) = d(u

0
, s

0
). That is to say, D(·, s

0
) is a

surjective mapping from U* to S (see, for instance, Arbib, Zeiger NF
1969).

Negoita and Ralescu (1975) have extended this definition to fuzzy
systems with a nonfuzzy input and a nonfuzzy initial state s

0
. The fuzzy

system S is said to be reachable from s
0
iff

;s [ S, 't,'u
t
 = u

0
u

1
 . . . u

t
such that mD

ut
(s, s

0
) = 1.

The α-cuts of a fuzzy system are nondeterministic (nonfuzzy) systems
defined by the α-cuts of d and s. This definition is consistent whenever
sup–min composition and α-cutting commute (II.2.A.b). Then the α-cut of
the state at time t + 1 can be obtained by the composition of the α-cuts of
the fuzzy state at time t and of the transition relation d.

Thus, the above definition of reachability means that s is reachable from
s

0
 by the 1-cut of S, which does not take fuzziness into account. Clearly

this definition may be relaxed to any given α-cut of S. More generally, a
fuzzy system with a fuzzy initial state ~sQ

and fuzzy inputs will be said to be
reachable from ~s0

 iff ; ~s [ ~3(S), 't, ' ~u
t
, = ~u0~u1

· · · ~ut
 where ~ui

 [ ~3(U),
i = 0,t, such that ~st + 1

= ~s (Negoita and Ralescu, 1975).
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This latter definition is very strict because the quantities ~ st + 1
and ~ s are

by essence ill known. A less strict definition, intuitively more appealing,
can be established by weakening the above equality into an inclusion:
~ st + 1

 # ~ s, or even a weak inclusion (II.1.E.c.α) or an e-inclusion (II.I.E.c.β).
A very relaxed definition may use the concept of consistency, replacing
~ st + 1

= ~s by hgt(~ st + 1
 > ~ s) > e where e is a threshold.

~ s can be interpreted as a fuzzy goal and the final state must be inside the
fuzzy goal. When S is a set of elements s that are already fuzzy sets on Q
(see the second point of view at the end of a.α), the goal may be chosen as
an element of s* of S. The reachability condition then may become

;s′ ≠ s*, m
~ st + 1

(s*) > m
~ st + 1

 (s′)

or more rigidly

m
~ st + 1

(s*) > h and ;s′ ≠ s*, m
~ st + 1

(s*) < e where h > e.

Here m
~ st + 1

(s) = hgt(s > ~ qt + 1
) where ~ st + 1

 is the approximation on S of ~ qt + 1
.

N.B. 1. Tong (1978b) proposes a definition of reachability, replacing
the equality ~ st + 1

= s by the equality of their “peaks”; the peak p
A
 of a

fuzzy set A is the nonfuzzy set of elements whose membership value in A is
hgt(A). This definition can be questioned since the fuzziness is not really
taken into account.

2. The relaxed definition of reachability, using consistency, is in the
same spirit as the notion of fuzzy surjection (II.4.A.a.β). That is to say, a
reachable fuzzy system could be one such that the fuzzy mapping D(·, s

0
)

from U* to S is fuzzily surjective.

β.   Observability

Recall that the response function of a nonfuzzy system is f
s0
(·) =

s(D(·, s
0
)) from U* to Y. A nonfuzzy system is said to be observable iff

;s
0
, s′

0
, if s

0
≠ s′

0
, then f

s0
(·) ≠ f

s′0
,(·) i.e., the mapping s∞ f

s
(·) from S to

U*) Y is injective. (See, e.g., Arbib and Zeiger, NF 1969.)
Negoita and Ralescu (1975) have extended this definition to a fuzzy

system S with a nonfuzzy input and a nonfuzzy initial state s
0
: S is said to

be observable iff

;s
0
, s′

0
, if s

0
 ≠ s

0
, then ~ f

s0 
(·) ≠ ~ f

s′0
 (·)

where ~ f
s0
 (·) is defined by

m ~ fs0
(u

t
)(y

t
)= sup

s
min(mD

ut
(s

0
, s), m

s
(y

t
, s)).

This definition can be readily extended to fuzzy inputs and fuzzy initial
state.

Since f
s
(·) is basically an ill-known response function, the above defini-

tion may once more be considered as far too strict. The concept of a
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fuzzily injective function (see II.4.A.a.β.) might be useful to define a fuzzy
observability for fuzzy systems.

The problem of minimal realization was solved by Negoita and Ralescu
(1975) when the inputs and the initial state are nonfuzzy. They use the
above definition of observability and the first definition of reachability
introduced. Their approach is very similar to the minimal realization of
nonfuzzy systems (see Arbib and Zeiger, NF 1969). They use Nerode
equivalence of input strings, i.e.,

;u
1
, u

2
[ U*, u

1  u
2
     iff     ;u, f(u

1
u) = f(u

2
u)

where f is a given response function. The set of states S is the quotient
space U*/  . For more details, see Negoita and Ralescu (1975).

N.B.:  The same authors also investigated a very general kind of fuzzy
systems where the transition function d is a function from ~3(S) 3 ~3(U) to
~3(S) and the output map s is a function from ~3(S) to ~3(Y). The minimal
realization theory for these systems is formally equivalent to that of
nonfuzzy systems. However, such an approach may appear very rigid for
fuzzy systems.

c.   Fuzzy Observation, Fuzzy Feedback Control System

Fuzzy systems with feedback control have been scarcely studied in the
literature. The only attempt seems to be that of Chang and Zadeh (1972).
The authors first introduce the notion of fuzzy observation. Let ~ s [ ~3(S) be
a fuzzy state. An observation of ~ s, denoted ̂s, is any fuzzy set included in ~ s
and renormalized; for instance, if ~ s′ # ~ s, m

ŝ
(s) = (m

~ s′(s) / hgt(~ s′)). An instru-
ment or means of observation is represented by an operator O. O( ~ s)
represents the set of possible observations of~ s. Let O

1
 and O

2
 be two

observation operators. O
2
 is said to be more definite than O

1
 iff

;ŝ
2
 [ O

2
( ~ s), 'ŝ

2
 [ O

1
( ~ s) such that ̂s

2
 # ŝ

1
.

A fuzzy feedback control system is composed of a fuzzy relation d on
S 3 U 3 S, an observation operator O, a goal set that is a fuzzy set ~ g on
S, a fuzzy control policy h that maps the observed fuzzy state to a fuzzy
control ~ u, and a fuzzy initial state ~ s0

. d represents the transition of the
controlled dynamic system. The equations are

  m
~ st + 1

(s
t + 1

) = sup
ut, st

min(m
~ st
,(s

t
), m

~ ut
(u

t
), m

d
(s

t + 1
, u, s

t
)),

m
~ ut
(u

t
) = sup

st
 min(m

ŝt
(s

t
), m

h
(u

t
, s

t
)),     ŝ

t
[ O( ~ st

),    t [ N.     (7)

The goal ~g is attainable iff 'h, 't, ŝ
t
# ~ g. When the control is not fuzzy, the

authors proved that given (d
1
, O

1
, ~ g) and (d

2
, O

2
, ~g), two control problems
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such that d
2
 is “finer” than d

1
 and O

2
 is more definite than O

1
, then if ~g is

attainable in (d
1
, O

1
, ~g), it is attainable in (d

2
, O

2
, g). (d

2
 is finer than d

1

means: ;u
1
, 'u

2
 such that ;s, s′, m

d2
 (s′, u

2
, s) < m

d1
(s′, u

1
, s).) “The power of

this feedback concept is demonstrated by showing that a precise goal can
be attained with a rather sloppy control and observation concept except
that as the goal is approached the observation must be precise” (Chang
and Zadeh, 1972).

d.   Fuzzy Topological Polysystems

Nazaroff (1973) introduced the notion of fuzzy topological polysystem;
it consists in a fuzzification of the topological aspects of the optimal
control of dynamical polysystems as contributed by Halkin (NF 1964).
Warren (1976) refocused the main conclusions of Nazaroff. This section
gives only an outline of the basic notions.

Let E be a set whose elements may be considered as events. A time
structure can be imposed on E by assuming a map k from E to R called
the clock; k(e) is the time of occurrence of e. Let r denote a binary
relation on E 3 E such that e1

 re
2
 means “the event e

2
 follows the event

e
1
.” r is assumed transitive, reflexive, antisymmetric, and forward (i.e., if

e
1
 re

2
 and e

1
 re

3
, then e

2
re

3
 or e

3
re

2
). r is called a strategy, and the set of

strategies on E is denoted R.
A fuzzy topological polysystem (Nazaroff, 1973) is a triple (E,%,R)

where (E,%) is a fuzzy topological space (see II.4.E) and R a strategy set
such that ;e

1
,e

2
[ E, ;A [ %, ;r [ R with e

1
re

2
 and e

1
[ suppA,

'B [ % such that e
2
 [ supp B and B # { e′, ere′ and e [ suppA}.

A fuzzy dynamical polysystem (Warren, 1976) is a fuzzy topological
polysystem (E, %, R) such that ;e

1
, e

2
, e

3
 [ E, ;r

1
, r

2
[ R with e

1
, r

1
, e

2
 and

e
2
, r

2
, e

3
, 'r [ R with e

1
, re

2
 and e

2
, re

3
. Only such polysystems are consid-

ered below.
;e

1
, e

2
[ E, ;r [ R with e

1
, re

2
, the set t(e

1
, e

2
, r) = { e [ E,e

1
re} "

{e [ E, ere
2
}  is called the trajectory from the event e

l
 to the event e

2
 using

the strategy r. The reachable set K(e
1
) from e

1
 is defined by ;e

1
[ E,

K(e
1
) = { e, 'r [ R, e

1
re};  the reachable set K(A)from the fuzzy set A [ %

is K(A) =   Ue1 ∈supp A K(e
1
). Note that K(e

1
), K(A), t(e

1
,e

2
,r) are crisp sets.

In this framework Nazaroff (1973) and Warren (1976) give some properties
of the trajectory, using the concept of boundary of a fuzzy set (see Warren,
Reference from II.4, 1977). A fuzzy control problem for the fuzzy dynami-
cal polysystem is also defined.

Remark  Considering fuzzy events ~ e1
, ~ e2

 in E and a fuzzy strategy
~ r [ ~3(R), one could define a fuzzy trajectory ~ t(~e1

, ~e2
, ~r ) with membership
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function

µ
t̃
(e) = min sup

e1∈E
r ∈R

min(µẽ1
(e1), µr (e1, e), µ r̃ (r)),




sup
e2∈E
′r ∈R

min(µẽ2
(e2 ), µ ′r (e, e2 ), µ r̃ ( ′r ))).

The fuzzy reachable set from~e1
 using nonfuzzy strategies is ~K(~e1

) such that

µ
K̃(ẽ1)

(e) = sup
e1∈E
r ∈R

min(µẽ1
(e1), µr (e1, e))

where r and r ′ are nonfuzzy binary relations.

e.   Concluding Remarks

Classical concepts such as stability have not been extended to fuzzy
systems yet (except a recent attempt by Tong (1978b), defining an equilib-
rium state as a state whose peak does not change within a given period).
Moreover, some years ago, Zadeh (1971) evoked a fuzzy theory of aggre-
gates as an open problem. In the theory of aggregates a system is viewed as
a collection of input–output pairs; an aggregate is a bundle of input-
output pairs satisfying certain conditions and a state is the name of an
aggregate (see Zadeh, NF 1969). It is still an open problem for fuzzy
systems. On the other hand, the rather rigid approach used for extending
reachability and observability to fuzzy systems may not seem intuitively
very appealing. A general theory of fuzzy systems perhaps demands more
imagination than a straightforward extension of classical concepts of
nonfuzzy system theory. Since the theory of approximate reasoning, initi-
ated by Zadeh, radically departs from multivalent logics, a theory of fuzzy
systems should perhaps be developed outside of the conceptual framework
of classical system theory.

C.   FUZZY AUTOMATA

A fuzzy automaton† is a fuzzy system in the sense of (1) where the sets U
of inputs, S of states, and Y of outputs are finite. The mathematical
formulation of a fuzzy automaton with a nonfuzzy initial state and

†Completely different but related to Poston’s work (see II.4.F) are the fuzzy-state automata
considered by Dal Cin (1975a, b).
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nonfuzzy inputs was first proposed by Wee (1967) and can also be found
in Wee and Fu (1969) or Santos (Reference from III.3, 1968). A fuzzy
automaton with a fuzzy initial state was first considered by Mizumoto et
al. (Reference from III.3; 1969) in the framework of language theory (see
3.A.g).

The problem of the reduction of fuzzy automata is investigated by
Santos (1972a). For this purpose, the author develops a max–min algebra
of real numbers playing a role in the theory of max–min automata similar
to that played by linear algebra in the theory of stochastic automata (see
Rabin, NF 1963; Paz, Reference from III.3). However, max–min algebra
strongly differs from linear algebra, and has scarcely been studied in the
literature. Various criteria of irreducibility and minimality are provided
(Santos, 1972a).

A general formulation of sequential machines encompassing determinis-
tic, nondeterministic, probabilistic, stochastic, and fuzzy finite machines
valued on [0, 1] is proposed in Santos and Wee (1968). Semantic aspects of
such machines are discussed at length by Gaines and Kohout (1976).

Valuation sets more general than [0, 1] can be used, especially any
ordered semiring R. An R-fuzzy automaton is a complex (U, S, Y,d,s, ~ s0

,
R) where U, S, Y are sets of inputs, states, and outputs, respectively, d an
R-fuzzy relation on S 3 U 3 S, s an R-fuzzy relation on S 3 Y, and ~ s0

 an
R-fuzzy set (initial state). Max and min operations are replaced by the sum
and the product of the semiring (see 3.A.f). Such automata were studied by
Wechler and Dimitrov (Reference from III.3) in the framework of lan-
guage theory. (See also Gaines and Kohout, 1976.) Further, Gaines and
Kohout (1976) suggested “possible automata” whose valuation set consists
of the semiopen interval ]0, 1] and the elements N, E, P, and I, respectively
interpreted as “necessary,” “eventual,” “possible,” and “impossible.” {N,
E, P, I} , equipped with operations playing the role of max and min for
fuzzy automata, is a 4-value Post algebra; but the interaction of ]0, 1] with
P is inconsistent with a lattice structure. The authors conclude that a more
general structure than a distributive lattice is needed for the valuation set,
i.e., an ordered semiring. (N.B.:  Gaines and Kohout (1976) coined the
term “possible,” in the sense of possibility distributions†—later introduced
by Zadeh.)

Other types of automata are max-product automata (Santos, 1972b; see
also Santos, Reference from III.3, 1976) where product replaces min and
R+ replaces [0, 1], and fuzzy–fuzzy automata (Mizumoto and Tanaka,
Reference from III.3) where [0, 1] is replaced by the set of normalized

†Actually, the word possibilistic was also introduced by Arbib and Manes (1975a). How-
ever, in the late fifties, Shackle (NF 1961) was already discussing a concept of possibility much
related to Zadeh’s approach.
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convex fuzzy sets on [0, 1] and max and min by max and min . A
distributive lattice structure is preserved in this last case.

Lastly, a very general approach to automata theory was developed by
Arbib and Manes (1975a, b) in the framework of category theory. Bobrow
and Arbib (NF 1974) had already unified the theories of minimal realiza-
tion of deterministic automata and linear systems. The study of fuzzy
machines in a category is based on the concept of “fuzzy theory” (see
II.4.F). The fuzzy transition relation d and the output map a become
morphisms in an extended category. Because of its very high level of
abstraction, the theory of fuzzy machines in a category is beyond the scope
of this book. This approach considers fuzziness as a special mathematical
property of a system rather than a lack of precise knowledge about the
behavior of a complex process.

Remark  A generalization of automata and graphs is a Petri net (see
e.g., Holt, NF 1971). Fuzzy Petri nets may be worth considering.

D.   DETERMINISTIC SYSTEMS IN A FUZZY ENVIRONMENT

This section deals with deterministic systems subject to fuzzily con-
strained behavior or fuzzy inputs.

a.   Deformed Systems    (Negoita and Ralescu, 1975)

A deformed system is a complex ((U, A), (S, B), (Y, C), d, s, s
0
) where

U, S, Y are the sets of inputs, states, and outputs fuzzily constrained by the
fuzzy sets A, B, and C, respectively, d is a transition function from U 3 S
to S whose domain is fuzzily constrained by B 3 A and its range by B, s is
the output map, i.e., a function from S to Y whose domain is fuzzily
restricted by B and its range fuzzily restricted by C, and s

0
 is a nonfuzzy

initial state. This concept was introduced by Negoita and Ralescu (1974).
The state equations of a deformed system are

s
t + 1

 = d(u
t
, s

t
),    y

t
 = s(s

t
)

where d and s satisfy

m
B
(s

t + 1
) > min(m

A
(u

t
), m

B
(s

t
)),  m

C
(y

t
) > m

B
(s

t
)       (8)

These two inequalities express the fact that d and s are fuzzily constrained
functions (see II.4.A.α). The fuzzy set A can be extended to the set U* of
input strings u in a canonical way:

m
A*

(u
t
) = min (m

A
(u

0
), m

A
(u

1
), . . .m

A
(u

t
))

where u
t
= u

0
u

1
. . . u

t
.
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The extension D of d from U to U* is defined by

D(u
t
, s

0
) = d(u

t
, D(u

t – 1
, s

0
)),     D(u

0
, s

0
) = d(u

0
,s

0
)

lt is easy to check that D is a fuzzily constrained function from U* 3 S to
S, i.e.,

m
B
(D(u

t
, s

0
)) = m

B
(s

t + 1
) > min(m

A*
(u

t
), m

B
(s

0
)).

It is clear that the response map s ° D is a fuzzily constrained function.
Negoita and Ralescu (1975) have developed a theory of minimal realiza-
tion for a deformed system; this theory is completely parallel to the same
theory for classical nonfuzzy systems.

b.   Fuzzy Noise   (Sugeno and Terano, 1977)

In this section a representation of a deterministic system subject to
fuzzily noised input is derived. The transition function d of the system is
viewed as a mapping from U 3 V 3 S where V is a set of inputs, assumed
to be uncontrollable. The state equations of the system are

s
t + 1

 = d(u
t
, v

t
, s

t
), y

t
= s(s

t
).

V is assumed to be equipped with a fuzzy measure g (see II.5.A.a), which is
assumed to be time-invariant and expresses the fuzzy noise.

At time t the noised input induces on S a fuzzy measure h, that is
recursively defined as follows: let s

0
 be the initial state; the fuzzy measure

h
0
 is such that

;A [ 3(S), h
0
(A) = m

A
(s

0
).

Consider now the fuzzy product measure in S3 V, denoted h
t 
3

 
g, such

that

;A [ 3(V 3 S),  (h
t
 3 g)(A) = )

S
[)

V
m

A
(v, s) ° g(·)] ° ht

(·)  (9)

;B [ 3(S), h
t + 1

 ,(B) = (h
t
 3 g)(A

ut
)

where A
ut
 = {( v, s), d(u

t
, v, s) [ B} .

g is similar to the probability measure of a noise that disturbs the input.
The uncertainty in the knowledge of the state is due to the fuzzy noise, and
the corresponding fuzzy measure h

t + 1
 is canonically induced from both g

and h
t
.

It is supposed that

 D(u′u′′, v′v′′, s) = D[u′′, v′′, D(u′, v′, s)]
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where ∆ is defined as in (a), θ' = u
t
u

t+l
. . . u

t
, θ'' = u

t'+l
, . . . , u

t ''
,v'

= v
t
v

t+1
 . . . v

t'
 , and v'' = v

t'+1
, . . . ,v

t''
 with t < t' < t'' and t, t', t'' [ N.

Denoting by σ
S
(B u

t
, s) the conditional fuzzy measure of the state transi-

tion

    
σs (B  ut , s) = )Ω

µ Aut
(v, s) o g(⋅),

it can be shown that

  
  ht  = 1(B)     =    )s σs(B  ut ,ut−1.  .  .  u0, s) o h0(⋅)

with

  
  σs (B  ut , ut−1.  .  .  u0 , s) =  )s σs (B  ut ,ut−1.  .  .  uk ,  s' ) o σs (⋅  uk−1.  .  .u0 ,s) 

    
σs (B  u0 , s) = )Ω

uAu0
(v, s) o  g(⋅).

Assume now that g is a possibility measure II associated with a possibil-
ity distribution p on Ω (see II.5.A.a.1η). h

t
 is now a possibility measure

associated with a possibility distribution γ
t
. Formula (9) becomes

(h
t
 3 II)(A) = sup sup min( m

A
 (s, v), p(v), γ

t
(s)).

The image of A under δut
 is B = δut

(A). The possibility distribution γ
t + 1

 is
obtained by setting B = {s

t + 1
}:

 γ
t + 1

 + (s
t + 1

) =       sup        min(γ
t
(s

t
), p (v

t
)),

which is nothing but (6) where δ is crisp and the fuzzy part of the input is
distinguished from the controllable (nonfuzzy part) using the formal equiv-
alence between possibility distribution and fuzzy sets.

E.    LINEAR FUZZY SYSTEMS

We shall call fuzzy linear systems, systems defined by linear state
equations whose coefficients are fuzzy numbers. The state will be fuzzy.
The initial state and the inputs may also be vectors of fuzzy numbers. The
state at tine t + 1 is given by the equations, in the sense of II.2.B.h.α.,

  
  
s̃  t+1  =  Ã ( s̃t % B̃ (̃ ũt                               (10)

where Ã  and B̃ are n 3 n and n 3 m fuzzy matrices, respectively (see
II.2.B.i); s̃ t + 1

, s̃ t
, and ũ

t
, are n, n, and m fuzzy vectors respectively; the sum

s
t

,  ω
t
 

  
s
t + 1

= δ
ut

(v
t

, s
t

)

    s  [ S  v [ Ω
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⋅

and product of fuzzy matrices can be expressed, using the extended
addition and product,

  ̃st+1
i = (ãi1  ( s t

1 )% .  .  .  % (ãin  ( s̃t
n ) % (b̃i1  ( ũ t

1 )% .  .  . % (b̃im  ( ũ t
m )

An equation similar to (10) was first hinted at by Negoita and Stefanescu
(1974) in a category-theoretic formulation. Jain (1976, 1977) studied fuzzy
linear systems in the one-dimensional case. Equation (10) can be expanded
as
  
  ̃s1 =  Ã ( s̃0 % B̃ ( ũ0 ,

  
  ̃s2 =  Ã ( ( Ã ( s̃0 % B̃ ( ũ0 ) % B̃ ( ũ1

  ̃st+1 =  Ã(( Ã( (.  .  .  .(( Ã( s̃0 % B̃( ũ0 )% .  .  .  .  ) % B̃ ( ũt−1)% B̃ ( ũt .

Generally, the expression of ~s
t + 1cannot be reduced (e.g., ~s2 ? ~A2( ~s0 %

~A ( ~B ( ~u
o
% ~B ( u

1
) because of the nondistributivity of (( over % (see

II.2.B.d.,β.), which forbids the associativity of the fuzzy matrix product.
Especially, we have ~A ( ( ~A ( ~A) ? (~A ( ~A) ( ~A. However, a sufficient con-
dition that validates the associativity is the positivity of the fuzzy entries of
~A. At any rate, it is always possible to compute ~s

t + l
 using the above

expression provided that we perform the operations recursively.
N.B.: Since (10) is an explicit equation yielding ~st + l

 , it is consistent
with the extension principle, that is to say it is also a fuzzy equation in the
sense of II.2.B.h.δ.

F.    OTHER TOPICS RELATED TO FUZZINESS AND SYSTEMS

This last section gives a survey of works dealing with fuzzy identifica-
tion, validation of fuzzy models, and fuzzy classifications of systems.
Research in these domains is only at its initial stages of development. We
begin with a remark about fuzzy models.

a.   Behavior of Fuzzy Models

Consider a fuzzy model that simulates a complex dynamical system. We
suppose that we know only the initial state and the transition function
between states in a fuzzy way. The problem is to forecast the future states
of the system by means of a fuzzy model. Intuitively, in such models the
state at time t ' is at least as fuzzily known as state s

t
, t < t ', unless some

external information is provided. Clearly, this is usually true for a fuzzy

• • •
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linear system, for instance, because the result of extended additions or
products is always relatively more fuzzy than the least fuzzy of the
involved operands. Note that this situation is similar to that of chains of
fuzzy inferences in approximate reasoning. An interesting feature of fuzzy
models in forecast analysis may be their ability to exhibit their own limit of
significance; beyond a certain horizon the forecast becomes too imprecise
to be of any use. A periodical restatement of feedback terms may be
necessary to limit the increase of fuzziness.

N.B.:   1.   Recall that fuzziness is one aspect of imprecision and models
the lack of sharp boundaries of tolerance intervals. The level of fuzziness
can be evaluated by means of entropy.

2. Thomason (Reference from II.3) showed that the fuzzy state of a
finite n-state fuzzy system in free motion (without input) either converges
or oscillates with a finite period. Denoting by δ the binary transition
matrix and by  ~s0  the initial state, a sufficient convergence condition is ;i,

1 < i < n, 'j, 1 < j < n, such that 
  
s0

i <  min s0
i , δ ji( ).  The convergence

occurs in a finite number of states (see II.3.B.b.~).

b.   Identification

The problem of identification of fuzzy systems was recently considered
for the first time by R. M. Tong (1978). A fuzzy model is viewed there as a
set of fuzzy conditional propositions such as “if <last input> is small and if
<last output> is large, then <current output> is medium.’’ Those proposi-
tions are called rules. Tong proposes indices of quality for the assessment
of such models so as to compare them with respect to a set of data (i.e.,
input-output pairs). The identification method is called “logical examina-
tion.’’ A class of models is characterized by the structure of the rules,
which corresponds to a data pattern. For the above example, the data
pattern is (ut - l

, y
t - l

, y
t
). The logical examination technique is then to

match each data pattern that can be built out of the data set with all
possible rules that can be defined for the class of models. When the
consistency between a data pattern and a rule is high enough, the rule is
kept as part of the model unless a significant data pattern is found
contradicting the rule.

Identification of fuzzy models must not be confused with fuzzy identifi-
cation of models. (Gaines, 1977) has proposed a fuzzification of the
general identification problem formulated in Section A.a. The behavior of
the process to be identified is assumed not to be observed precisely, but is
instead a fuzzy restriction on the set of possible behaviors B, i.e., a
mapping µ from B to [0, 1]. The mapping can clearly be extended in the
usual way to M

b
, the nonfuzzy set of admissible models that describe the
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nonfuzzy behavior b: the mapping m* from M, the set of models, to [0, 1],
such that

  
∀ m  [ M,      µ *(m) =  sup

b
 min(µMb

(m),  µ (b))

defines the fuzzy admissible subset of models induced by the fuzzy
behavior. The author illustrates his approach on an example of fuzzy
identification of a stochastic automaton. Note that “this simple extension
does not take into account the relative degrees of approximation of the
same models to differing behaviors.’’

c.   Validation of Models

This aspect of identification was considered by Chang (1977) for the
validation of economic models. Given a structural equation y = F(x, β)
where x is a vector of exogenous variables, y a vector of endogenous
variables, and β a vector of parameters, the problem of determining the
parameters β from economic data is called the estimation problem. The
author considers  β as a fuzzy set B constructed as follows

m
B
(β) = exp (N−1)(1− C(β ) / C  (β0 ))[ ]

where C(β)= 
i  = 1

N∑ [y
i
− F(x

i
, β)] tW [y

i
− F(x

i
, β)], {(x

i
,y

i
), i = 1, N} is

a set of data, W a matrix of weights, C(β) the cost associated with a
forecast error, and β

0
 a value of β minimizing C(β).

N.B.: This is not the only way of defining B.
Given B and a fuzzy real vector   ~x, the model y = F(x, β) induces a

fuzzy set A of possible values fory:
µ A(y) =     sup

y  = F(x,
 β)

     min(µ x̃ (x),  µB(β)).

m
B
(β) may be viewed as an evaluation of the validity of the parameter

value β with respect to the set of data. When m different forecasting
models are available, the author suggests a way of combining their results.
Let A

i
 be the fuzzy result of model i that is assumed to have a reliability

r
i
 [ [0, 1]. The consensus of the m models is given by  A =      I

i  = 1, m
Ai

rl     where   µ
Ai

ri
(x) = µ Ai

(x)[ ]ri
.

When hgt(A) is close to l, the m models have a consensus that is likely to
be reliable; if hgt(A) is close to 0, no consensus can be reached among the
forecasts.

Moreover, Yager (1978) recently outlined a linguistic approach for the
validation of fuzzy models with respect to a set of fuzzy data. Formally,
the fuzzy model is described by the equation ~y  = F( ~x ) where ~x and ~y are
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fuzzy sets of R. The set of data is made up of pairs (A, B) of real fuzzy sets
where A is the input and B the output of the process under consideration.
The problem is to compare F(A) with the observation B taken as a
reference. The author suggests the use of a truth qualification rule (see
l.E.b), i.e., find t [ ~3([0, 1]) such that the fuzzy proposition “y is F(A) is
t’’ is semantically equivalent to the fuzzy proposition “y is B.” t linguisti-
cally measures the compatibility of the fuzzy model with the pair of fuzzy
data (A, B).

d.   Fuzzy Classes of Systems

The basic idea is that the class of nonfuzzy systems that are approxi-
mately equivalent to a given (type of) system from the point of view of
their behaviors is a fuzzy class of systems, for instance, the class of systems
that are approximately linear. This idea of fuzzy classification of systems
was first hinted at by Zadeh (1965). Saridis (1975) applied it to the
classification of nonlinear systems according to their nonlinearities. Pattern
recognition methods are first used to build crisp classes. “Generally this
approach does not answer the question of complete identification of the
nonlinearities involved within one class.” To distinguish between the
nonlinearities belonging to a single class, membership values in this class
are defined for each nonlinearity. One of these is considered as a reference
with a membership value 1. The membership value of each nonlinearity is
calculated by comparing the coefficients of its polynomial series expansion
to that of the reference nonlinearity. This technique of classification is
similar to those used in fuzzy pattern classification (IV.6).
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Chapter 3
FUZZY LANGUAGES—
FUZZY ALGORITHMS

This chapter is divided into two distinct parts. The first deals with the
application of fuzzy set theory to formal languages. Many papers have
been published on this topic. These are mainly interested in studying the
properties of fuzzy grammars and the recognition capabilities of fuzzy
automata. However, other models have been developed where the original
max and min operators and the valuation set [0, 1] were more or less given
up and other structures were investigated. These models share little with
the initial motivations and purposes of fuzzy set theory. On the contrary,
in order to reduce the gap between formal languages and natural language,
Zadeh has proposed an alternative approach where the semantic aspects
are no longer neglected.

The second part is devoted to fuzzy algorithms. A clear distinction is
made between usual algorithms extended to deal with fuzzy data and
algorithms that are approximate descriptions of complex actions or proce-
dures, yielding fuzzy or nonfuzzy results. Both formal and semantic aspects
are discussed.

A. FUZZY LANGUAGES AND FUZZY GRAMMARS

“The precision of formal languages contrasts rather sharply with the
imprecision of natural languages. To reduce the gap between them, it is
natural to introduce randomness into the structure of formal languages,
thus leading to the concept of stochastic languages” (see, e.g., Fu and

210
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Huang, NF 1972). “Another possibility lies in the introduction of fuzzi-
ness” (Lee and Zadeh, 1969).

This section gives a survey of fuzzy formal languages and grammars and
more general formal models that encompass them. The reader is assumed
familiar with the theory of formal languages (see, e.g., Hopcroft and
Ullman, NF 1969).

a. Fuzzy Languages (Lee and Zadeh, 1969)

Let V
T
 be a finite set called an alphabet. We denote by V

T
*  the set of

finite strings constructed by concatenation of elements of V
T
 including the

null string L. V
T
*  is a free monoid over V

T
 A language is a subset of V

T
* .

Very naturally, a fuzzy formal language is a fuzzy set L on V
T
* , i.e.,

  

L = µL

x ∈VT
*

∑ x( ) x

with m
L
 a function from V

T
* to [0, 1]. m

L
(x) is the degree of membership of x

in L and can be interpreted as a degree of properness of the string x,
valuating to what extent it is suitable to use it.

Union and intersection of fuzzy languages can be defined as usual

L
1

< L
2
:   m

L1 < L2
(x) = max(m

L1
(x), m

L2
(x)),   ;x [ V

T
*,

L
1

> L
2
:   m

L1 < L2
(x) = min(m

L1
(x), m

L2
(x)),   ;x [ V

T
*.

And the complement  L of L has membership function 1 –m
L
.

A specific operation between languages is concatenation: any string x in
V

T
* is the concatenation of a prefix string u and a suffix string n : x = un.

According to the extension principle, the concatenation L
1
L

2
 of two fuzzy

languages L
1
 and L

2
 is defined by

m
L1 L2

(x) = sup
x=uv

min(m
L1

(u), m
L2

(v)).

The concatenation of fuzzy languages is associative. Denoting by Ln the
concatenation of L n times, the Kleene closure of L is   L̂= { L} < L < L2 <
L3 < • • • < Ln < • • • . Note that ;x [ V

T
*, if x = a

1
a

2
• • • a

k
, a

i
[ V

T
,

i = 1,k, then

    

µ
L̂

x( ) = sup
i=1, k

sup
x = u1u2Lui
∀ j, uj ∈VT

*

min
j =1, i

 µL uj( )




















;

k is the length of x, denoted l(x).
The following property holds (Negoita and Ralescu, 1975): L =   L̂ iff

m
L
(L) = 1 and m

L
(un) > min(m

L
(u), m

L
(n)) ;u, n [ V

T
*.
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A fuzzy language that is its own Kleene closure is said to be closed, and
it is obviously a fuzzy monoid in V

T
*, in the sense of Rosenfeld (Reference

from II.1).
N.B.: The idea of valuating the strings of a language is not new. In a

probabilistic context Rabin (NF 1963) already used weighted languages,
but the semantics were different: the weight of a string reflected a
frequency of occurrence. At about the same time Chomsky and Schützen-
berger (NF 1970) assigned integer values to strings in order to model
structural ambiguity.

b. Fuzzy Grammars (Lee and Zadeh, 1969)

“Informally, a fuzzy grammar may be viewed as a set of rules for
generating the elements of a fuzzy set” (Lee and Zadeh, 1969). More
precisely, a fuzzy grammar is a quadruple G = (V

N
V

T
P, s) where: V

T
 is a

set of terminals or alphabet; V
N
 is a set of nonterminals (V

N
> V

T
= Ø),

i.e., labels of certain fuzzy sets on V
T
* called fuzzy syntactic categories; P is

a finite set of rules called productions; and s [ V
N
 is the initial symbol,

i.e., the label of the syntactic category “string.” The elements of P are
expressions of the form a →r b; r [ [0, l] where a and b are strings in
(V

T
< V

N
)* . r is the grade of membership of b given a. The symbol *

always indicates a free monoid X* over the set X. r also expresses a degree
of properness of the rule a → b.

Let a
l
, . . . , a

m
 be strings in (V

T
< V

N
)* , and a

1
→r2  a

2
, . . . , a

m–1
→rm a

m

be productions. Then a
m
 is said to be derivable from a

1
 in G, more briefly

a
l
⇒

G
a

m
. The expression a

1
→r2  a

2
, . . . , →rm a

m
 will be referred to as a

derivation chain from a
1
 to a

m
.

A fuzzy grammar G generates a fuzzy language L(G) in the following
manner. A string x of V

T
* is said to be in L(G) iff x is derivable from s.

The grade of membership m
G
(x) of x in L(G) is

m
G
(x) = sup min(m(s→ a

1
), m(a

1
→ a

2
), . . . ,m(a

m
→ x)) > 0 (1)

where m(a
1

→ a
i + 1

) is the nonnull r
i+1

 such that

α1 →
ρi+1

α i+1




 ∈P ∀ i = 0, m,

if a
0
= s and a

m + 1
= x.

The supremum is taken over all derivation chains from s to x. Note that
“x is in L(G)” means x [ suppL(G). The degree of properness of a
derivation chain is that of its least proper link, and m

G
(x) is calculated on

the “best” chain. Two fuzzy grammars G
l
 and G

2
 are said to be equivalent

iff ;x [ V
T
*, m

G1
(x) = m

G2
(x).
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Example  V
N

= {s, A, B); V
T

= {a, b};

P =
s→

0.3
a, s→

0.5
aA, s→

0.2
bA, A→

0.5
b

s→
0.3

as, s→
0.7

aB, s→
0.1

b, B→
0.4

b












.

Consider the string ab. There are three derivation chains:

s→
0.7

aB→
0.4

ab, s→
0.5

aA→
0.5

ab, s→
0.3

as→
0.1

ab,

and m
G
(ab) = max(min(0.7, 0.4), min(0.5, 0.5), min(0.3, 0.1)) = 0.5.

Paralleling the standard classification of ordinary grammars, we can
distinguish four types of fuzzy grammars:

Type 0 grammar.The allowed productions are of the general form
a →r  b, r > 0, a, b [ (V

T
 < V

N
)*.

Type 1 grammar (context-sensitive). The productions are of the form
a

1
Aa

2
→ρ a

1
ba

2
, r > 0, a

1
, a

2
, b are in (V

T
< V

N
)*,  A in V

N
, b ≠ L. s →1 L

is also allowed.
Type 2 grammar (context-free). The allowable productions are now

A →ρ b, r > 0, A [ V
N
, b [ (V

N
< V

T
)*, b ≠ L, and s→1 L.

Type 3 grammar (regular). The allowable productions are A →ρ  aB or
A →ρ a, r > 0, where a [ V

T
; A, B [ V

N
 and s →1 L.

In the above example the grammar G is regular. If G is of type i, L(G) is
said to be of type i.

A grammar is said to be recursive iff there is an algorithm that computes
m

G
(X). Lee and Zadeh (1969) showed that a fuzzy context-sensitive gram-

mar was recursive. The proof uses loop-free derivation chains; the set of
such chains, over which the supremum is taken in (1), can be further
restricted to those of bounded length l

0
 which depends on l(x) and

* V
T

< V
N

* The number of loop-free chains is finite because a production
of a context-sensitive grammar is noncontracting, i.e., ;(a

i
→ρ a

j
), l(a

j
)

> l(a
i
): and thus the search process is finite. Note that type 2 and 3

grammars are recursive too since they are particular cases of context-
sensitive grammars.

Another kind of extension of classical results to fuzzy grammar is
Chomsky and Greibach normal forms for context-free grammars (Lee and
Zadeh 1969); let G be a fuzzy context-free grammar:

G is equivalent to a fuzzy grammar whose productions are of the form
A →r BC or A →r a where A, B, C [ V

N
, a [ V

T
 (Chomsky);
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G is equivalent to a fuzzy grammar whose productions are of the form
A →r  aa, a [ V

T
, a [ V

N
, A[ V

N
 (Greibach).

The canonical forms are obtained as for nonfuzzy grammars, provided we
add formula (1) for valuating derivation chains. For a detailed proof, the
reader is referred to Lee and Zadeh (1969).

c. Cut-Point Languages

Let L(G) be a fuzzy language and G a grammar that generates L(G).
Several nonfuzzy languages can be generated from L(G). For instance,

L(G, l) = {x [ V
T
* * m

G
(x) > l},

L(G, > , l) = {x [ V
T
* * m

G
(x) > l},

L(G, = ,l) = {x [ V
T
* * m

G
(x) = l} ,

L(G, l
1
, l

2
) = {x [ V

T
* * l

1
< m

G
(x) < l

2
},

where l, l
1
, l

2
 are thresholds that belong to [0, 1]. These languages are

called cut-point languages. Note that since P is finite, the image of V
T
*

through m
G
, m

G
(V

T
*) # [0, 1], is also finite because we use only max and min

operators to valuate strings. Let m
G
(V

T
*) be {0, m

1
, m

2
, . . . ,m

p
} where p is

at most the number of rules in P. Thus the number of cut-point languages
of each kind is finite, and depends on the number of distinct production
valuations.

Mizumoto et al. (1970) have proven the following properties:

(i) ;l, ;i = 0, 3, if G is a fuzzy grammar of type i, then L(G, l) is of
type i.

(ii) ;l, for i = 0 and 2, if G is a fuzzy grammar of type i, then
L(G, l

1
, l

2
) and L(G, = , l) may not be of type i. For i = 3, L(G, l

1
,

l
2
) and L(G, = ,l) are of type 3. For i = 1, the result is unknown.

(iii) ;l, i = 0, 3, if G is a fuzzy grammar of type i, then L(G, > ,l) is of
type i.

Proof: (i) and (iii) stem from the fact that only rules of production
a →r  b such that r > l (resp. r > l) are used to build L(G, l) (resp.
L(G, > , l). Moreover, L(G, l

l
, l

2
) = L(G,l

l
) – L(G,l

2
); L(G, = ,l) = L(G,

> , l) – L(G, l), and the sets of all languages of type 0 and 2 are not closed
under subtraction. For i = 1, the result is unknown. For i = 3, the closure
property holds.
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d. Fuzzy Syntax Directed Translations (Thomason, 1974)

A translation T of a language L
1
 in V

T
* into a language L

2
 in W

T
* where

V
T
, W

T
 are alphabets is a fuzzy relation on V

T
* 3 W

T
* such that domT = L

1

and ran T = L
2
, where domT and ranT are respectively the domain and

the range of T (see II.3.B.a). m
T
(x, y) is the grade of properness of

translating x by y, x [ suppL
1
, y [ suppL

2
.

An efficient model in formal language translation theory is that of a
syntax-directed translation scheme (SDTS). A fuzzy STDS is a 5-tuple
7 = (V

N
, V

T
, W

T
, s, D) where V

N
 is a set of nonterminals, V

T
 and W

T
 are

alphabets, s an initial symbol and D a set of double productions A →r a, b
with A [ V

N
(a, b) [ (V

T
< V

N
)* 3 (W

T
 < V

N
)*, and r > 0 valuates the

translation of a into b.
N.B.: a and b are assumed to contain the same nonterminal elements,

but not necessarily to have the same length.
Obviously, when a string is generated in V

T
* another string is generated

in W
T
* by means of a double derivation chain. A fuzzy STDS builds the

translation relation T.

Example V
N

= {s, A, B}, V
T

= {a, b}, W
T

= {c, d, e}

Productions:

s→
0.3

as, cs;     s→
0.3

bs,es;     s→
0.5

aA,dA

s→
0.7

aB,dB;     s→
0.2

bA,cA;     s→
0.1

b,e

A→
0.5

b,c;     B→
0.4

b,c





















.

Consider ab [ V
T
*. There are two derivation chains that translate ab into

dc:

s→
0.7

aB, dB→
0.4

ab, dc           and s→
0.5

aA, dA→
0.5

ab, dc.

According to (1), m
T
(ab, dc) = max(min(0.7, 0.4), min(0.5, 0.5)) = 0.5. An-

other possible translation of ab is ce since (s →0.3 as, cs →0.1 ab, ce) and m
T
(ab,

dc) = min(0.3, 0.1) = 0.1.
N.B.:  Note that a regular STDS, as the one of the example, always

translates a string into one or several strings of the same length, that of the
string to be translated.

e. N-fold Fuzzy Grammars  (Mizumoto et al., 1970, 1973a)

Ordinary fuzzy grammars have one major drawback that prevents them
from being a convenient tool for the modeling of natural language: the
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grade of properness of productions is always context-free, which is not
realistic.

Instead of increasing V
N
 or P in order to cope with this context-

dependency, it is possible to define a grammar where grades of properness
of productions depend on productions that have been previously used.

An N-fold fuzzy grammar is a 6-tuple (V
T
, V

N
, s, P, J, 5) = G where V

T

is a set of terminals, V
N
 of nonterminals, and s an initial symbol. J is a set

of labels for production rules (J # N); P a set of production rules a →
l
  b

where l [ J; and 5 a set of N + 1 fuzzy relations denoted R
i
, i = 1, N + 1.

R
i
 is an i-ary relation on J, i = 2, N + 1, such that m

Ri
(l

1
, . . . ,l

i
) is the

degree of properness of using production l
i
 when productions l

1
, . . . , l

i – 1

have already been used successively just before l
i
 in a derivation chain.

For i = 1, m
R1

(l) valuates productions of the form s →
l
  a, where l belongs

to a subset J
S
 of J, which labels such productions.

Consider the derivation chain

  
s→

l1

ρ1
α1 →

l2

ρ2
α2 →  L →

lp

ρp

α p.

We have r
l
 = m

R1
(l

1
), r

2
 = m

R2
(l

1
, l

2
), . . . , r

N + 1
 = m

RN + 1
(l

1
, . . . , l

N + 1
); and

for i > N + 1, r
i
= m

RN + 1
(l

i – N
, . . . , l

i
). Hence, the grade of properness of a

production depends on the N previously used productions.
N.B.: A 0-fold fuzzy grammar is an ordinary fuzzy grammar.

Example (Mizumoto et al., 1970) We give an example of a l-fold
fuzzy grammar:

V
N

= (A, B, C, s), V
T

= { a, b, c} J
s
= {1} m

R1
(1) = 0.9.

R
2
 is defined by

1 2 3 4 5 6 7 8 9 10
(1) s→ ABC ( 0.7 0.8 0.9 )
(2) A → aA ( 0.7 )
(3) B → bB ( 0.7 )
(4) C → cC ( 0.7 0.7 )
(5) A → aAa ( 0.8 )
(6) B → bBb ( 0.8 )
(7) C → cCc ( 0.8 0.8 )
(8) A → a ( 0.9 )
(9) B → b ( 0.9)

(10) C → c ( )

In the list of productions each blank space indicates that the value of r at
that space is a numerical value within the range [0, 0.65]. Consider the
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generation of the sequence a3b3c3:

(i) s→
1

0.9
ABC→

2

0.7
aABC→

3

0.7
aAbBC→

4

0.7
aAbBcC→

2

0.7
a2 AbBcC

→
3

0.7
a2 Ab2BcC→

4

0.7
a2 Ab2Bc2C→

8

0.7
a3b2Bc2C→

9

0.9
a3b3c2C→

10

0.9
a3b3c3.

(ii) s→
1

0.9
ABC→

5

0.8
aAaBC→

6

0.8
aAabBbC→

7

0.8
aAabBbcCc

→
8

0.8
a3bBbcCc→

9

0.9
a3b3cCc→

10

0.9
a3b3c3.

The grades of properness of (i) and (ii) are respectively 0.7 and 0.8. Other
derivations are possible. It could be checked that m

G
(a3b3c3) = 0.8. More-

over, the cut-point languages of G are

L(G, 0.95) = Ø; L(G, 0.85) = {a,b,c};
L(G, 0.75) = {a2n – lb2n – 1c2n – 1 | n > 0,n [ N};
L(G, 0.65) = {ahbhch | h > 0, h [ N};

L(G, 0) = {apbqcr | p, q, r [ N and pqr ≠ 0}.

Note that G has a context-free structure, and L(G, 0.75), L(G, 0.65) are
context-sensitive languages. Hence, type 2 N-fold fuzzy grammars can
generate type 1 fuzzy languages, i.e., N-fold fuzzy grammars are more
powerful than ordinary fuzzy grammars.

Mizumoto et al. (1973a) showed that given a regular N-fold fuzzy
grammar, it is always possible to build an (N + 1)-fold fuzzy grammar and
an (N – 1)-fold fuzzy grammar (N > 1) that are equivalent to the initial
grammar. Hence, a regular N-fold fuzzy grammar is able to generate only
regular fuzzy languages and is a useless notion.

N.B.: Another way of reducing the gap between formal and natural
languages by modifying a fuzzy grammar was suggested by Kandel (1974)
who constrains derivations through a control language. This is a set of
strings that encode allowed derivation chains in a deterministic fashion.
Although this approach seems much more rigid than that of Mizumoto et
al. (1973a) the determination of the control language looks more straight-
forward than that of the relations R

i
, from the point of view of grammati-

cal inference.

f. Other Kinds of Grammars

Other kinds of fuzzy grammars have been considered in the literature.
Santos (1975a, b) has studied the so-called max-product grammars, which
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are fuzzy grammars such that the valuation set of productions is R+.
Moreover, for the evaluation of a derivation chain, the product replaces
min in (1). Max-product grammars also arise naturally from the applica-
tion of maximal interpretation of stochastic grammars (Fu and Huang, NF
1972). Santos (1975a) proved that context-free max-product grammars
generate a set of fuzzy languages that contains the set of fuzzy context-free
languages as a proper subset, without being the set of fuzzy context-
sensitive languages. Regular max-product grammars were investigated in
Santos (1975b). They are more general than the max-min ones, in that
they generate nonregular languages. But some context-free and stochastic
languages are not obtained.

DePalma and Yau (1975) introduced fractionally fuzzy grammars. A
string is derived in the same manner as in the case of a fuzzy grammar.
However, the membership of a string is given by

µG x( ) = sup
k

g lk
i( )

i = 1

nk

∑
h lk

i( )
i = 1

nk

∑





















∈ 0,  1[ ]

with k = index of a derivation chain leading to x; n
k
= length of the kth

derivation chain; g and h functions from J to R, where J labels the
productions, and h(l) > g(l) ;l [ J; and the convention 0/0 = 0. Frac-
tionally fuzzy grammars were used by both authors instead of fuzzy
grammars in order to reduce the combinatorial aspect of parsing in a
pattern recognition procedure (see IV.6.A.b).

Fuzzy tree grammars were also considered by Inagaki and Fukumura
(1975). A tree grammar (see Brainard, NF 1969) is a 5-tuple (V

N
, V

T
, r, P, s)

where V
N
, V

T
 are sets of nonterminals and terminals, respectively. r is a

mapping V
T

< V
N

→ N ranking V
T
 and V

N
, P is a finite set of productions

F → C with F and C being trees over (V
N
 < V

T
, r). r is used for encoding

the trees. Inagaki and Fukumura use production rules valuated on [0, 1].
Another way of increasing the generative power of a fuzzy grammar is to

take a lattice as a valuation set. A general formulation of formal lattice-
valued grammars was proposed by Mizumoto et al. (1972).

An L-fuzzy language over an alphabet V
T
 is an L-fuzzy set (see II.1.G.a)

on V
T
*. Union and intersection are defined using the operators sup and inf

of the lattice L, as in II.1.G.a. The concatenation of two L-fuzzy languages
L

l
 and L

2
 is very similar to that of ordinary fuzzy languages:

  

∀ x ∈VT
* ,    µL1L2

x( ) = sup
u ∈ VT

* ,  υ ∈ VT
*

x = u υ

inf µL1
u( ),  µL2

v( )( ).
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Mizumoto et al. suggest that sup and inf may be exchanged. We then
obtain an inf-sup concatenation. Kleene closure is also defined very
similarly, as above in a.

An L-fuzzy grammar is a fuzzy grammar where productions are valued
in a lattice L, also called a weighting space (see Kim et al., 1974). The
properties of L-fuzzy grammars have been studied by several authors for
particular types of lattices. Here we only state some results without proofs:

L is a Boolean finite lattice B (Mizumoto et al., 1975a):

the class of cut-point languages L(G, l), l [ B, generated by context-free
B-fuzzy grammars properly contains the class of context-free languages.

any cut-point language L(G, l), l [ B, generated by regular B-fuzzy
grammars is a regular language;

regular B-fuzzy languages are a closed set under union, intersection,
sup-inf concatenation, and Kleene closure; however, the complement (in
the sense of Brown, Reference from II.1; see II.1.G.a) of a regular B-fuzzy
language is generally not a regular B-fuzzy language, but can be generated
through inf-sup concatenation of regular B-fuzzy languages.

context-free B-fuzzy languages are a closed set under union, sup-inf
concatenation, and Kleene closure, but not under intersection and comple-
mentation.

L is an ordered semiring R (Wechler, 1975a):

a semiring (R, + , ·) is an algebraic structure equipped with two opera-
tions + and ·, such that:

(R, +) is a semigroup (or monoid), i.e., ;r l
, r

2
[ R

l
r

l
+ r

2
[ R, + is

associative, '0 [ R; r
l
+ 0 = 0 +r

l
 = r

l
 for any r

l
[ R; 0 is an identity;

(R– {0}, ·) is a semigroup; the identity is 1;
0 is a zero for ·, i.e., ;r [ R, 0·r = r·0 = 0;
· is distributive over +.

A semiring R is said to be an ordered semiring (R, <) iff < is a partial
ordering and:

;r
l
, r

2
, r

3
[ R if r

l
< r

2
, then r

l
+ r

3
< r

2
+ r

3
 and r

3
+ r

l
< r

3
+ r

2
;

;r
l
, r

2
[ R, ;r

3
≠ 0 such that 0< r

3
; if r

l
< r

2
, then r

l
· r

3
< r

2
· r

3
 and

r
3
· r

l
< r

3
· r

2
.

Examples Examples include [0, 1] with the usual ordering, + = max,
· = min, N, the set of positive integers, Z the set of integers, R that of real
numbers, any complete distributive lattice equipped with their usual opera-
tions.
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The weight of a string generated by an R-fuzzy grammar, where R is an
ordered semiring is the sum (+) of the weights of all the derivation chains
from the initial symbol to the string. The weight of a derivation chain is
the product of the weights of the productions involved in the chain. The
partial ordering < is used for the definition of cut-point languages.

Wechler (1975a) gives the following theorem: Let G be a regular R-fuzzy
grammar. Then L(G, r) is a regular language for every r [ R if R is a finite
ordered semiring or a complete distributive lattice or N.

N.B.: The idea of using an ordered semiring to weight the productions
of a grammar and to valuate strings in a language is not new. Chomsky
and Schützenberger (NF 1970) first suggested it in 1963. Each string x
generated by a grammar G was associated with a positive integer n which
was the number of possible derivation chains existing from the initial
symbol to x. n measured the grade of ambiguity of x with respect to G.
Both authors studied the algebraic properties of such “N-fuzzy languages”
generated by context-free grammars. They introduced a representation of
the language which was a formal power series S

x[VT*
〈w, x〉x where w is

the weighting function and 〈w, x〉 = w(x) [ N; this notation is very similar
to that introduced by Zadeh (Reference from II.2, 1972; see II.1.A) for
representing fuzzy sets.

Other examples of formal grammars with weights can be found in
Mizumoto et al. (1973b).

In conclusion, it seems rather easy to enhance the generative power of
fuzzy context-free grammars by modifying the weighting space; however,
very often, L-fuzzy grammars, when regular, generate only regular L-fuzzy
languages for usual L. Modifying also the valuation rules of derivation
chains and strings looks more efficient, as shown by the properties of
max-product fuzzy grammars.

g. Languages and Automata

a. Generation of a Fuzzy Language by a Fuzzy Automaton

Fuzzy automata have been introduced in the previous chapter as models
of fuzzy systems. Here they will be considered as acceptors of fuzzy
languages.

Let ! = (U, S, Y, ~s0
, d, s) be the fuzzy automaton already introduced in

Chapter 2. Recall that:

U is a finite set of inputs, U = { a
l
, . . . ,a

m
};

S is a finite set of states, S = {q
1
, . . . ,q

n
};

Y is a finite set of outputs, Y= { y
1
, . . . ,y

p
};

~s0
 is a fuzzy set on X, the fuzzy initial state;
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d is a fuzzy ternary relation on S3 U 3 S, made up of m transition
relations {d

u
}

u[U
 for the states;

s is a fuzzy relation on S3 Y, i.e., the output map.

When a nonfuzzy input u is processed by the automaton, the output can
be symbolically written ~y = ~s0

+ d
u

+ s where + is the (associative) com-
position of binary relations. Once a string of inputs u = u

1
u

2
· · ·u

k
 has

been processed by the automaton, the fuzzy output is  ỹ = s̃0 o δu1
o δu2

o ⋅⋅⋅ o δuk( ) o σ = s̃0 o ∆θ o σ.

Denote by D
u
 the result of the composition d

u1
+ · · ·+ d

uk
. D

L
 is the

identity relation.
From now on we consider automata whose output set is the singleton

{ y}. What such automata compute are membership values, i.e., ~y =
f

!
(u)/y using Zadeh’s notation, where f

!
 is the response function of the

automaton. For simplicity, we shall write f
!
(u) = ~ s0

+ D
0

+ s.
Note that the image of U* (the free monoid over U containing all the

finite strings of inputs) under f
!
 is a fuzzy language L(!). Hence, fuzzy

automata can recognize fuzzy languages.

b. Structural Properties of Automata-Generated Fuzzy Languages

Structural properties of fuzzy languages accepted by fuzzy automata
were studied by Mizumoto et al. (1969) and by Santos (1968, 1969b).

First, there is a closure property under < and > (Mizumoto et al.,
1969).

(1) If !
1
 and !

2
 are fuzzy automata, '! = !

1    ! 2C such that

L(!) = L(!
1
) < L(!

2
)

A is defined by U = U
1

< U
2
, S = S

1
< S

2
, Y = Y

1
< Y

2
. Using matrix

notations (see I.3.B.b.g);

δ =
δ1 0

0 δ2






, s̃0 = s̃01

, s̃02( ), σ =
σ1

σ2






.

where the subscript 1 or 2 denotes a component of !
1
 or !

2
, respectively.

(2) If !
1
 and !

2
 are fuzzy automata, '! = !

1
^ !

2
 such that

L(!) = L(!
1
) > L(!

2
)

It is defined by U = U
l
3 U

2
, S = S

1
3 S

2
, Y = Y

1
3 Y

2
, d = c(d

l
) >

c(d
2
) = d

l
3 d

2
; ~ s0

= ~s01
3 ~s02

; s = s
1

3 s
2
. d, ~s0

, s are the joins (II.3.A.a) of
d

l
 and d

2
, ~s01

 and ~s02
, s

1
 and s

2
 respectively.
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Now a property relating fuzzy languages and their complement is given.

(3) ;!, '!– that recognizes   L(!) and !– is a “min-max automaton,” i.e.,    1− f! θ( ) = s̃0 o ∆θ o σ = s̃0 o ∆θ o σ = f
!

θ( ).

!– is a “min-max automaton” because +–, min-max composition is used
instead of +.

Lastly, the following propositions were proved by Santos (1977):
(4) If !

1
 and !

2
 are fuzzy automata, '! = !

1
+ !

2
 such that

L(!) = L(!
1
)L(!

2
)    (concatenation)

(5) If ! is a fuzzy automaton, then '!̂ such that

  
L !̂( ) = L̂ !( ) (Kleene closure)

(6) If !
1
 is a fuzzy automaton, then '! such that L(!) = a L̂(!

1
),

defined as

f
!
(u) = min(a, f

!1
(u)),   ;u [ U*,    and   a [ [0, 1].

is the same as !
1
 except its output map s is defined by ;q

j
[ S,

m
s
(q

j
, y) = min(a, m

s
(q

j
, y)) where s

1
 is the output map of !

1
.

g. Fuzzy Automata and Regular Grammars

In this section we consider a restricted type of fuzzy automaton whose
initial state is not fuzzy, and s is a classical function from F to {y}, F
being a nonfuzzy subset of states, called “final states,” i.e., m

s
(s

j
, y) = 1 iff

s
j
[ F.
Two automata !

1
 and !

2
 are said to be equivalent iff L(!

1
) = L(!

2
).

Any fuzzy automaton as defined in a is equivalent to a restricted fuzzy
automaton. For consider ! = (U, S, Y, s̃0 , d, s). !′ = (U, S< { ŝ , y}, Y ′, ŝ ,
d′, s′) is equivalent to ! provided that

ŝ is an artificial state added to S, and the initial state of !′;
d′ is defined as follows: m

d′(a, s, s′) = m
d
(a, s, s′) ;s, s′ [ S, ;a [ U;

  

µ ′δ a, ŝ, s( ) = max
′s ∈S

 min µ s̃0
′s( ),  µδ a, ′s ,s( )( ) ∀ s ∈S;

µ ′δ a,s, ŝ( ) = 0 for   s ∈S U ŝ, y{ };

µ ′δ a,s, y( ) = max
′s ∈S

 min µδ a,s, ′s( ), µσ ′s , y( )( ) ∀ s ∈S;

µ ′δ a, y,s( ) = 0 ∀ s ∈S   or    s = ŝ;

µ ′δ a, ŝ, y( ) = max
s∈S

 min µ ′δ a, ŝ, s( ), µσ s, y( )( ).
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The final state of !′ is y. Y′ = {y′} where Y′ is artificially introduced and
s′ is such that m

s′(s, y′) = 0 ;s[ S< { ŝ }  and 1 for s = y. Then, given an
input string u = u

1
u

2
. . . u

k
, u

i
[ U,

f
!
(u)

  = max
s0 , s1,K , sk∈S

min µ s̃0
s0( ), µδ u1, s0 , s1( ),K , µδ uk , sk−1, sk( ), µσ sk , y( )( )

  = max
s1,K , sk−1∈S

min µ ′δ u1, ŝ, s1( ), µ ′δ u2 , s1, s2( )K µ ′δ uk , sk−1, y( )( )
= f

!′(u)

because ̂s is not fuzzy and m
s′(y, y′) = 1. When k = 1, we use the expres-

sion for m
d′(a, ŝ , y).

Santos (1968) showed that the capacity of a fuzzy automaton as an
acceptor is equal to that of a nonfuzzy automaton. More specifically, for a
given regular fuzzy grammar G, there exists a fuzzy automaton ! such that
L(G) = L(!) and conversely. The proof given here is similar to Mizumoto
et al.’s (1970):

(i) Let G = (V
T
, V

N
, s, P, J) be a regular fuzzy grammar. The corre-

sponding fuzzy automaton ! = { U, S, Y, s
0
, d, F) where the initial

state s
0
 is nonfuzzy and F is the set of final states is defined by

U = V
T
, S= J < { s} , Y= { y} (any singleton),

s0 = s, F = l ∈J, A→
l

ρ
a



 ∈P







,

;s
i
, s

j
[ S, ;a [ U, m

d
(s

i
, a, s

j
) = r

j
 iff (s

i
 is the index of a produc-

tion A → bB and s
j
 that of the production B →rj a or B →rj aC) or

(s
i
= s and s

j
 is the index of the production s →rj aA); m

d
(s

i
, a, s

j
) = 0

otherwise. It is easy to verify that any sequence of transitions of !
from the initial state to a final state has a nonzero membership
value iff the corresponding input string is generated by G.

(ii) Let ! = (U, S, Y, s
0
, d, F) be a fuzzy restricted automaton. It is

possible to consider only such an automaton since a general one
can always be put into a restricted form. The equivalent fuzzy
grammar is defined by

V
T
= U, V

N
= S–F, s= s

0
,

P contains productions s
i
→rj as

j
; when m

d
(s

i
, a, s

j
) = r

j
> 0 and s

i
→rj

a
when m

d
(s

i
, a, s

j
) = r

j
> 0, and s

i
[ F where s

j
 can be the initial state

s
0
. Q.E.D.

Hence, fuzzy automata generate regular fuzzy languages.
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d. Other Properties of Fuzzy Automata

The following property gives a sufficient condition for a fuzzy automa-
ton to generate a fuzzy language that is its own Kleene closure.

Let ! = (U, S, Y, s̃0 , d, a) be a fuzzy automaton such that (1) ;a ∈ U, ;s
i

∈ S, m
d
(s

i
, a, s

i
) = 1; (2) s̃0

+ s = 1; then L(!) is a closed language (i.e.,

  L̂(!) = L(!)) (Negoita, Ralescu 1975, Reference from I).

Proof: f
!
(L) = s̃0

+ D
L

+ s = s̃0
+ s = 1. Since d

a
 is reflexive, D

u
 is also

reflexive for each u ∈ U*. Hence, D
uu′ = D

u
+ D

u′ ⊇ D
u
, and we have

Now, we consider a property of fuzzy automata related to cut-point
languages. Let L(!, a) be the cut-point language {u ∈ U*, f

!
(u) > a} of

L(!); ;a
0
∈ [0, 1], '!

0
, L(!, a) = L(!

0
, a

0
) (for a proof see Mizumoto, et al.

1969).

h. Other Recognition Devices

Let us quote Santos (1976): “The model of fuzzy automata obtained
[using max and min operators] is not an interesting model when we view it
as a recognition device for fuzzy languages. . . . Most of the results ob-
tained in this manner are trivial extensions of existing ones.” This remark
points out the need for more powerful devices: the related literature is
briefly surveyed.

We must however mention first a paper by Thomason (1974) in which a
fuzzy transducer automaton is constructed. This machine is equivalent to
the fuzzy STDS (see d) and is still a max-min machine.

Paz (1967) deals with the problem of the approximate recognition of
fuzzy languages and their cut-points by means of deterministic and proba-
bilistic automata.

Nasu and Honda (1968) define a probabilistic event as a fuzzy language
accepted by a finite probabilistic automaton. The set of probabilistic
events is a proper subset of the set of fuzzy languages. In this paper it is
shown that the set of probabilistic events is closed under transposition and
convex combination. Less strong results for the fuzzy union and intersec-
tion of probabilistic events are given.

The recognition capabilities of max-product automata (see 2.C) were
investigated by Santos (1975a) and compared to those of probabilistic and
max-min automata. Santos (1976) also proved that the union of all
cut-point languages of the forms L(!, l), L(!, > , l), L(!, = , l) over a given
alphabet contains the set of regular languages over this alphabet as a
proper subset.

f
!
(uu′) = s̃0 + D

uu′ + s > s̃0 + D
u′ + s = f

!
(u′) > min(f

!
(u), f

!
(u′))

Q.E.D.
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L-fuzzy automata were studied by various authors: Wechler and
Dimitrov (1974) when L is an ordered semiring; Mizumoto et al. (1975a)
when L is a boolean lattice; Mizumoto and Tanaka (1976) when L is the
set of normalized convex fuzzy sets of [0, l]; and Santos (1977) when L is a
linearly ordered semigroup. These automata have the same recognition
capabilities as max-min automata in the sense that L-fuzzy automata
recognize regular L-fuzzy languages whose cut-points of the form L(!, l)
are regular.

Wechler (1975b) also considered languages recognized by time-variant
L-fuzzy automata where L is an ordered semiring.

Lastly, Honda and Nasu (1975) and Honda et al. (1977) present general
results on recognition of L-fuzzy languages where L is a lattice with a
minimum element, by L-fuzzy Turing machines (see the next section for
L = [0, 1]), L-fuzzy linear bounded automata, L-fuzzy push-down auto-
mata, and L-fuzzy automata.

Remark Augmented transition networks (Woods, NF 1970), which are
related to transformational grammars, do not seem to have been fuzzified
yet, although this may be worth considering. The stochastic version has
already been studied by Chou and Fu (NF 1975).

i. Nonformal Fuzzy Languages (Zadeh, 1972)

As may be seen above, it is quite easy to generalize much of the theory
of formal languages to fuzzy sets of strings. However, as Zadeh (1972)
points out, “the resulting theory still falls far short of providing an
adequate model for the syntax of natural language.” This is because “it
fails to reflect the primary function of a language as a system of corre-
spondences between strings of words and sets of objects or constructs
which are described by these strings.”

In order to explicitly take into account these correspondences—which
are fuzzy by essence in natural language—Zadeh (1972) gives the following
broader definition of a fuzzy language.

A fuzzy language L is a quadruple (U, T, E, N) in which:

U is a universe of discourse, i.e., a set of objects, actions, relations,
concepts, . . . ;

T, the term set, is a fuzzy set of terms that serve as names of fuzzy
subsets of U;

E, an embedding set for T, is a collection of symbols and their combina-
tions from which the terms are drawn, i.e., T is a fuzzy subset on E;

N, the naming relation, is a fuzzy relation on (supp T) 3 U.
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The grade of membership m
T
(t) of the term t may be viewed as the degree

of well formedness or grammaticality of t. m
N
(t, u) is interpreted as the

degree to which the term t fits the element u [ U.
When T and U are sets with a small number of elements, it is easy to

define m
N
 and m

T
 by tabulation. However, generally, both supp T and U are

infinite sets and “the characterization of T and N requires that they be
endowed with a structure allowing the computation of m

T
 and m

N
.” Hence,

there is introduced the notion of a structured fuzzy language which is a
quadruple (U, S

T
, E, S

N
) where U and E are defined as above, S

T
 is a set of

rules, called the syntactic rules of L, which provide an algorithm for
computing m

T
, and S

N
 is a set of rules, called the semantic rules of L,

which provides an algorithm for computing m
N
.

Obviously, a formal fuzzy language is a particular case of the fuzzy
language defined above; more specifically, in a formal fuzzy language,
only T and E are considered. Further, when T is nonfuzzy, the domain
dom(N) (see II.3.B.a) if the fuzzy relation N may be viewed as a fuzzy
formal language.

Semantic aspects of the fuzzy languages are studied in Part IV, Chapter 2.

B. Fuzzy Algorithms

According to Zadeh (1973), “a fuzzy algorithm is an ordered set of fuzzy
instructions which upon execution yield an approximate solution to a
specified problem.” The idea of fuzzy algorithm was first introduced by
Zadeh (1968). Such a definition subsumes most human action and think-
ing: people use fuzzy algorithms when they drive a car, search for an
object, untie a knot, cook food (the recipe of a scrumptious chocolate
fudge was given under the form of a fuzzy flowchart in Zadeh, 1973),
recognize patterns, or make a decision. Since fuzzy algorithms can face a
range of slightly different situations, they summarize information in a
concise, although approximate manner.

a. Fuzzy Instructions (Zadeh, 1973)

The instructions in a fuzzy algorithm belong to one of three categories:

(1) Assignment statements: a possibly fuzzy value is assigned to a
variable. For instance:

“x equals approximately 5.”
“y is not small and not very large.”
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(2) Fuzzy conditional statements: a possibly fuzzy value is assigned to a
variable or an action is executed, provided that a fuzzy condition holds.
For instance:

“If x is large, then y is small else y is not small.”
“If x is much smaller than 8, then stop.”

(3) Unconditional action statements: a possibly fuzzy mathematical op-
eration or an action is executed:

“Decrease x slightly.”
“Multiply x by itself a few times.”

An instruction is thus said to be fuzzy as soon as the name of a fuzzy set
appears in it, and blurs somewhat its execution (“write small” is fuzzy, but
“write ‘small’” is not). Note that in a fuzzy algorithm, not all the instruc-
tions are necessarily fuzzy. Note that fuzzy instructions of type 1 and 2 are
very similar to fuzzy propositions in approximate reasoning (see l.E).

b. Formal Algorithmic Machines

a. Fuzzy Algorithms as Fuzzy Systems

As pointed out by Zadeh (1968, 1972b), the notion of fuzzy algorithm is
closely related to that of fuzzy system. We may view a fuzzy algorithm as a
fuzzy system whose equations are ;t [ N;

µ s̃t+1
st+1( ) = sup

ut , st
min µ s̃t

st( ), µ ũt
ut( ), µδ st+1, ut , st( )( ),

µ ũt+1
ut+1( ) = sup

st+1
min µ s̃t+1

st+1( ), µσ ut+1, st+1( )( ), (2)

where s̃t is a fuzzy state of the algorithm at time t, ũ , a fuzzy input
(representing a fuzzy instruction) at time t, s̃t +1 the result of the execution
of the fuzzy instruction ̃ut

, d expresses the dependence of s̃t +1 on s̃t , and ũt
,

and s the dependence of the fuzzy instruction at time t on the fuzzy state
at time t. s̃0 is the initial state.

Formulas (2) correspond to the complete execution of the fuzzy instruc-
tion ũ t

: the first equation changes the state, the second is a fuzzy branch-
ing. A fuzzy instruction is viewed here as a fuzzy set of instructions
executed in parallel.

b. Fuzzy Turing Machines

Algorithms may be thought of in terms of Turing machines. Thus, a
natural way to formalize the concept of fuzzy algorithm is via the concept
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of fuzzy Turing machines. A brief discussion of fuzzy Turing machines was
first given by Zadeh (1968), and a detailed formulation can be found in
Santos (1970).

A fuzzy Turing machine is a complex Z = (A, B, S, d, s̃0 ) where A is the
printing alphabet, B an auxiliary alphabet that contains special symbols
like “blank” (b), S a set of internal states, d a transition fuzzy relation on
S3 U 3 V 3 S with U = A < B and V = U < {+ , – , 0}; s̃0 is the initial
state. + , – , 0 mean respectively a move of one step to the “right,” a move
of one step to the “left,” and the termination of the algorithmic procedure.
It is assumed that

;u [ U,  m
d
(s, u, 0,s′) = 0      if s′ ≠ s.

An instantaneous expression a of Z is a finite sequence (possibly empty)
of elements of U < S such that a contains only one element of S; a is of
the form usut with u and t elements of U* (the set of strings made of
elements of U), u [ U, and s[ S. The state s is said to point at u in the
instantaneous expression a. The transition between two instantaneous
expressions a and b is expressed by the membership value m

Z
(a, b) which

is equal to:

m
d
(s, u, u′, s′)        if   a = usut   and   b = us′u′t

(u′ has been written in place of u and the new state s′ points at the same
place);

µδ s, u, +, ′s( ) if      
α = θ su ′u τ    and    β = θ u ′s ′u τ
or   α = θ su     and     β = θ u ′s b





(the new state has “moved” one step to the right);

µδ s, u, −, ′s( ) if      
α = θ ′u su τ    and    β = θ s ′u u τ
or   α = su τ    and     β = ′s bu τ





(the new state has “moved” one step to the left);

m
d
(s, u, 0, s) if a = b (end of computation);

0 otherwise.

A computation of Z with input x [ U* and output y [ U* is a finite
sequence a

0
, a

1
, . . . , a

n
 of instantaneous expressions where a

0
= s

0
x and

a
n
= ust with y = ut. The membership value of the computation is

min(m s̃0
(s

0
), m

Z
(a

0
, a

l
), . . . ,m

Z
(a

n – 1
, a

n
), m

d
(s, u, 0, s))

where u is the symbol immediately to the right of s in a
n
. Denoting by

m
Z
i(x / y) the membership value of a computation of y from x, the possibil-

ity of computing y from x is m
Z
(x / y) = sup

i
m

Z
i(x / y).
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γ. Fuzzy Markov Algorithm

Santos (1970) also proved the equivalence between a fuzzy Turing
machine and a fuzzy version of a Markov algorithm. Here we give a
simpler definition of a fuzzy Markov algorithm according to Zadeh
(1972a).

Let U be an alphabet. A fuzzy Markov algorithm FM is made of a
linearly ordered set of production rules P

i
, i = 1, n, of the form

P
i
: a

i
→ m

1
/b

1
+ · · · +m

k
/ b

k
i = 1, n – 1,

P
n
: L → 1/L,

where a
i
, b

j
 are elements of U* and L denotes the empty string. We

omitted for the sake of simplicity the subscript i in the right-hand part of
the rule i. The input is a finite support fuzzy set of strings:

L
0
= m(u

1
) / u

1
+ · · · +m(u

m
) / u

m
.

First, we use the rule FM(L
0
) = m(u

1
) / FM(u

1
) + · · · + m(u

m
) / FM(u

m
).

To compute each FM(u
r
), we find the smallest i such that production P

i

can be applied to u
r
 (i.e., a

i
 occurs as a substring of u

r
). When there is

ambiguity about how to apply P
i
, it is the leftmost occurrence of a

i
 that is

replaced by m
1
/b

1
+ · · · + m

k
/b

k
: if u

r
= ga

i
t with g, t [ U*, then

FM(u
r
) = m

l
/gb

1
t + · · · + m

k
/gb

k
t.

Moreover, we define

m(u
r
)/FM(u

r
) = min(m(u

r
), m

1
)/gb

1
t + · · · +min(m(u

r
), m

k
)/gb

k
t.

When the application of P
i
 to u

r
 gives a string gb

j
t that is the terminating

part of u
r
, the string gb

j
t is considered as dead and no rule will be applied

to it any longer. A string is also dead when only rule P
n
 can be applied to

it. The procedure is iterated until only dead strings remain. The fuzzy
language made up of all the dead strings is the result.

“The execution of a fuzzy Markov algorithm may be likened to a
birth-and-death process in which the operation FM on a string u

r
 gives rise

to the birth of new strings . . . and the death of others. . . . As in a birth
and death process the population of ‘live’ strings can grow explosively. . . .
This rather interesting aspect of fuzzy Markov algorithm is not present in
conventional Markov algorithms” (Zadeh, 1972a).

d. Fuzzy Programs   (Santos, 1976, 1977)

A mathematical formulation of fuzzy programs was introduced by
Santos, general enough to encompass all existing formulations (those of S.
K. Chang, 1972; Jakubowski and Kasprzak, 1973; Tanaka and Mizumoto,
1975). The main appeal of this formulation is that it is closer to the
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intuitive representation of a fuzzy algorithm as a set of fuzzy instructions.
An instruction is a string of one of the following forms:

Start: go to L;
L: do F; go to L′;
L: if P, then go to (Ll, L2, . . . ,LN);
L: halt;

where N is a positive integer, L, L′, L1, . . . ,LN belong to a set L
a
 of

labels, F belongs to ̂  (the set of function or operation symbols), and P
belongs to 3

N
 (the set of N-valued predicates or test symbols). The four

types of instructions are called respectively “start,” “operation,” “test,”
and “halt” instructions.

A program is a finite set w of instructions containing exactly one start
instruction and no two instructions in w have the same label. In a test
instruction P is a function valued in {1, 2, . . . ,N}; and if the value of P is
K, then the next instruction to be executed has label LK.

Let (R, +, · ,<) be an ordered semiring (see A.f). An R-machine is a
complex (U, M, Y, I,d, t, s, ^, 3) such that U, M, and Y are respectively the
input, memory, and output sets. I is an R-fuzzy relation on U 3 M, d an
R-fuzzy relation on M 3 ^ 3 M, t an R-fuzzy relation on 3 3 M 3 N

with 3 = <
N
3

N
, and s an R-fuzzy relation on M 3 Y. Moreover, denot-

ing by t
P
 the conditioned fuzzy relation obtained from t by fixing P, for

every P [ 3, there exists a positive integer N such that t
P
 is an R-fuzzy

relation on M 3 {1, 2, . . . ,N}.
Let P [ 3

N
. If m

tp
(m, K) = m

tp
(m′, K) for all m and m′ belonging to M

and for all K [ {1, . . . , N}, then P is said to be unconditional, and so is
any instruction containing P.

Let w be a program and M be an R-machine. M is said to admit w iff:

(1) for every operation instruction of the form “L: do F; go to L′,”
F [ ^;

(2) for every test instruction of the form “if P, then go to
(Ll, . . . , LN),” P [ 3

N
.

We write (L′, m
l
) →r  (L, m

2
), where m

l
 and m

2
 are two elements of M, iff

there is an instruction in w of the form “L′: do F; go to L” and
m

d
(m

l
, F, m

2
) = r. We write (L′, m) →r  (L″,m), where m [ M, iff there is an

instruction in w of the form “L′: if P, then go to (Ll, . . . , LN)” such that
L″ = LK for some K [ {1, . . . , N} and r = m

tp
(m, K).

A computation by w on an R-machine is a finite sequence u, L
0
, m

0
,

L
1
, . . . ,L

n
, m

n
, y where u [ U, y [ Y, in which L

0
 is a label contained in

the start instruction of w and L
N
 is the label of some halt instruction in w.

The membership value associated with the computation is an element
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r [ R such that r = r
0

· r
l
· · · · · r

n+l
 where r

0
= m

I
(u, m

0
), r

n+l
= m

s
(m

n
,

y), and for every other i : (L
i – l

, m
i – l

) →r i (L
i
, m

i
). The computation of y

from u is feasible iff r ≠ 0. The possibility of computing y from u with w is
valuated by the sum (in the sense of R) of all the membership values r of
the computations of y from u. Note that the result is an R-fuzzy set of Y.

“The above discussion gives a precise formulation of the concept of
max-min programs, probabilistic programs, max-product programs, non-
deterministic programs, deterministic programs and other types of fuzzy
programs.” (Santos, 1977). Santos (1977) also showed that fuzzy programs
and fuzzy Turing machines are closely related. The fuzzy machines execut-
ing fuzzy programs introduced in Chang (1972), Jakubowski and Kasprzak
(1973), and Tanaka and Mizumoto (1975) are less general because they are
based on deterministic, nondeterministic, or R-fuzzy automata, respec-
tively, and fuzzy instructions in the three cases.

Note that a fuzzy program is viewed here as a fuzzy set of nonfuzzy
programs in the sense that fuzzy instructions are fuzzy sets of instructions.

e. Execution of Fuzzy Programs

Obviously, the execution of fuzzy programs in the sense of d is equiva-
lent to the parallel execution of a possibly nonfinite number of determinis-
tic programs. Practically however, for each fuzzy instruction, a determinis-
tic instruction is chosen, which is assumed to be the best interpretation of
the fuzzy instruction, and actually executed. If a fuzzy instruction is
reached for which there is no deterministic instruction capable of perform-
ing a feasible computation (r = 0 or at least r falls below a given thresh-
old), then a backtracking process must be initiated. The necessity for
backtracking stems from the fact that choosing locally the best interpreta-
tion of fuzzy instructions in sequence does not ensure the optimality of the
global computation.

A fuzzy test instruction is interpreted by selecting the label of another
instruction. Tanaka and Mizumoto (1975) hinted at three ways of selec-
tion:

(i) “fuzzy” selection, i.e., choose LK such that m
tp

(m, K) is the greatest
of all m

tp
(m, J) for J = 1, N;

(ii) “probabilistic” selection, i.e., a random choice of LK, according to
the probability values

µτ p
m, J( ) µτ p

m, J( )
J

∑    ∀ J;

(iii) “nondeterministic” selection, i.e., choose any among the LJ’s such
that m

tp
(m, LJ) > a, for a given threshold a.



III.3. Fuzzy Languages—Fuzzy Algorithms

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

232

The operation instructions are interpreted by selecting a deterministic
state transition, according to the value of m

d
,(m

l
, F, m

2
), with one of the

above selection methods. In Tanaka and Mizumoto (1975) this approach
for executing fuzzy programs was exemplified with computer simulation of
human driver behavior (the “driver” follows a fuzzy routing plan) and of
character generation. Here, the action expressed by a fuzzy instruction
yields a nonfuzzy result, and thus the action itself is nonfuzzy. In Tanaka
and Mizumoto’s fuzzy programs it is assumed that when an action fails
(because it is unfeasible), it is always possible to backtrack and modify a
previous action. Obviously, the backtracking assumption is not always
realistic.

“The key to success of a fuzzy algorithm is fuzzy feedback that is a
mechanism for (a) observing—not necessarily precisely—the result of
execution of a fuzzy instruction; and (b) executing a new instruction based
on the result or results of preceding instructions.” (Zadeh, 1968). The
existence of a feedback allows slight modifications of the result of a fuzzy
instruction owing to (fuzzy) tests that evaluate the quality of this result.
The fuzzy feedback control loop of the algorithm improves its robustness
and suppresses part of the backtracking.

c. Algorithms for Computing Fuzzy Sets

Such algorithms are made of fuzzy instructions that are executed in a
deterministic way through logico-algebraic combinations of fuzzy sets. The
result consists in fuzzy sets computed from intermediate fuzzy results and
fuzzy sets appearing in the fuzzy instructions.

a. Fuzzy Assignment Statements

A fuzzy value is assigned to a variable of the algorithm. For instance, “x
equals approximately 5” is interpreted here as x ← ~5 where ~5 is a fuzzy
number whose mean value is 5. Note that in fuzzy algorithms in the sense
of b this instruction is executed by stating x ← a where a is nonfuzzy and
chosen by one of the described selection methods above, using m

~5
(a).

b. Fuzzy Uncondltional Action Statements

An operation is performed on fuzzy sets. For instance, “decrease x
slightly” may be interpreted as follows: x ← x((1 * ~e) where ~e is a
positive fuzzy number close to 0. Such an operation was referred to as an
“operation” in the previous section, where it was executed by choosing a
nonfuzzy e: x ← x(l – e) using m

~e
(e) for guiding the choice. Another

example is “multiply x by itself a few times,” with few = 1/1 + 0.8/2 +
0.6/3 + 0.4/4 and x assumed nonfuzzy; we then obtain x ← 1/x2 +
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0.8/x3 + 0.6/x4 + 0.4x5. Nevertheless, if few is modeled by a continuous
positive fuzzy number ~l, it is easy to compute at once x~l (see II.2.B.d:
m

x~l
(y) = m

~l
(ln y / ln x)) instead of computing the power of x several times,

actually as many times as the number of integer elements in supp ~l. It is
always possible to a posteriori extract from x~l the membership values
corresponding to integer exponents. (Here, the performance of the ex-
tended operation commutes with the discretization of the support; this is
not always true—see II.2.A.b.) More generally, extended operations are
very appealing in the execution of fuzzy unconditional statements that are
allowed to have a fuzzy result because parallel computation can be
avoided.

g. Fuzzy Conditional Statements (C. L. Chang, 1975)

We consider here fuzzy instructions of the form “if P(x
l
, . . . ,x

n
), then

go to L else go to L′”  where P is an n-ary fuzzy predicate and L and L′ are
labels of fuzzy instructions. C. L. Chang (1975) has proposed the following
interpretation of a fuzzy conditional statement when the values of
x

1
, . . . , x

n
 are allowed to be fuzzy. In ordinary nonfuzzy algorithms, a

nonfuzzy condition described by a predicate is checked on the n-tuples of
nonfuzzy values and only the “then part” of the statement is executed
when the condition holds. Otherwise, it is the negation of the condition
that holds and it is the “else part” that is executed. When x

1
, . . . ,x

n
 are

fuzzy or/and the predicate is fuzzy, none of the complementary conditions
may completely hold and both branchings need to be done. The fuzzy
instructions L and L′ will be executed by using different fuzzy values of
the variables, i.e., those that fit respectively P and L P.

More specifically, let ~u1
, . . . , ~un

 be the fuzzy values of x
1
, . . . , x

n

before the execution and R the n-ary fuzzy relation associated with P; the
degree to which P holds for ~u1

, . . . , ~un
 is

µ
R̃

ũ1,  .  .  .  , ũn( ) = sup
u1, . . . , un

min µ ũ1
u1( ),  .  .  .  , µ ũn

un( ), µR u1,  .  .  .  , un( )( );
this is actually a consistency degree (see II.3.F.d). The fuzzy value ~u

i
*  of x;

that best fits P with respect to the values ~u1
, . . . , ~un – 1

, ~ui + 1
, . . . , ~un

 is
such that

µ
ũi
* ui( ) = sup

j≠i
min µ ũ j

uj( ), µR u1,  .  .  .  , un( )( ).
The value of x

i
 before executing instruction L will be ~ui

> ~ui* , i = 1,n. The
degree to which L P holds for ~u1

, . . . , ~un
 is m R̃ (~u1

, . . . ,~ un
) where R is the

complement of R. The value of x
i
 before executing instruction L′ will be

~ui
· > ~ui

; where ~ui
· is computed as ~ui* , replacing R by R in the formula
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Remark Fuzzy algorithms may be pictured by fuzzy flowcharts. For
instance, the flowchart of the last example is shown in Fig. 1 where l and m
belong to [0, 1] and valuate the validity of the branchings (symbolically,
l = hgt(x > (y + R )) = hgt(y > (x + R )) andm = hgt(x > (y + R)) =
hgt(y > (x + R))). When one of the validity degrees is very low, a natural
approximation leads to canceling the corresponding branching. More
generally, we may keep only the most valid branching according to the
“rule of the preponderant alternative” (Zadeh, 1973). Besides, we may

expressing ~u
i
*. Note that generally m ~R( ~u1

, . . . , ~u
n
) ≠ 1 – m

R̃
(~u

1
, . . . , ~u

n
),

except if the values of the x
i
 are not fuzzy. Moreover, ;i = 1,n,

m~R(~u1
, . . . , ~u

n
) = hgt(~u

i
> ~u

i
*)  and  m

R̃
(~u

1
, . . . , ~u

n
) = hgt(~u

i
> ~u

i
·).

The values of the program variables may become nonnormalized after
such a fuzzy branching: their heights indicate the validity of the result. The
existence of fuzzy conditional statements entails parallel computations and
may cause some programs to loop. A computation may be stopped when
output variables of a fuzzy instruction have values whose height is too low.
Some examples of fuzzy branching instructions are given below. First
consider:

If x is small, then go to Ll else go to L2;
Ll: y is large; go to L;
L2: y is not large; got to L;
L: output y.

Let s̃ , l̃ , and ũ  represent “small,” “large,” and the initial value of x. The
“then part” yields the result x ← ũ > s̃  and y ← l̃ ; the “else part” gives
x ← ũ > s̃  and y ← l̃ . Note that we obtain a fuzzy set of fuzzy sets hgt(ũ >
s̃ )/ ~l + hgt(ũ > s̃ )/ l̃ . Adamo (Reference from IV.2, 1978b) has proposed a
method to reduce the complexity of the result: y ← ~n where m

~n
(l)

= max(min(hgt(̃u > s̃ ), m~l
(l)), min(hgt(ũ > s̃ , m ~l

(l))). Instead of keeping x
unchanged, as Adamo did, we may prefer x ← ( ũ > s̃ ) < ( ũ > s̃ ) = ũ > ( s̃ <
s̃ ).

Consider now the following example (C. L. Chang, 1975):

L0: if x is approximately equal to y, go to L1 else go to L2;
L1: y ← x + y; go to L0;
L2: z ← x + y.

Let ~u, ~v be respectively the initial value of x and y and R be the fuzzy
relation “approximately equal.” The result of the first step is for L1,
x ← ~u > ( ~v + R) and y ← [ ~u > ( ~v + R)] % [ ~v > ( ~u + R)], and for L2 we
have z ← [ ~u > ( ~v + R )] % [ ~v > ( ~u + R )]. Stopping may occur when the
height of the value of z is maximal, otherwise the program may loop even
when x and y are nonzero.
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Figure 1

think of linguistic validity degrees for the branchings (see Zadeh, Refer-
ence from II.2, 1975); they could be defined as compatibility values (see
II.2.A.e.b), instead of consistency values as above.

d. Inference Statements

Some fuzzy conditional statements can be interpreted as “fuzzy infer-
ence statements,” which are particular cases of fuzzy unconditional action
statements. Consider, for instance, the fuzzy conditional statement: “If x is
P, then go to Ll else go to L2” with Ll: y ← Q and L2: y ← R, where
P, Q, R are fuzzy on the universes of x, y, and y, respectively. Viewed as
interpolation, the three fuzzy instructions above can be translated into one
fuzzy instruction:

y ← x + [(P → Q) U (L P → R)]

by analogy with approximate reasoning (see l.E), provided that after the
execution of Ll and L2, the same fuzzy instruction follows. In the above
statement → denotes any implication operator considered in l.E.c.d.
However, when min is used for valuating →, the above formula is nothing
but Adamo’s interpretation (Adamo, Reference from IV.2 1978b) of the
original three fuzzy instructions (see c.g).

Proof: Let ~u be the initial value of x and ~n be the output value of y.
We have

m
~n
(n) = sup

u
min µ ũ u( ), max min µP u( ), µQ ν( )( ), min µ

P
u( ), µR ν( )( )[ ]( )

= sup
u

max min µ ũ u( ), µP u( ), µQ ν( )( ), min µ ũ u( ), µ
P

u( ), µR ν( )( )( )
= max min sup

u
min µ ũ u( ), µP u( )( ), µQ ν( )( ),



           min sup
u

min µ ũ u( ), µ
P

u( )( ), µR ν( )( )
  
= max min hgt ũ I P( ), µQ ν( )( ), min hgt ũ I P( ), µR ν( )( )[ ]. Q.E.D.
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d. Fuzzification of Algorithms: A Warning

Given two nonfuzzy algorithms that calculate the same quantities using
different flowcharts, it may happen that their straightforward fuzzifications
(i.e., adapting them to fuzzy data or parameters) do not any longer yield
the same result. This point is illustrated in the following example.

Consider the very simple scheduling problem involving one task com-
posed of a known sequence of n elementary operations i; the processing
time of operation i is p

i
. Let r

0
 be the earliest starting operating time and

d
n + 1

 be the due date of the task. It is assumed that d
n + l

– r
0

> S
i
n
= 1

p
i

(i.e., the problem is feasible). We want to find an algorithm for computing
the earliest starting time r

i
, the latest ending time d

i
, and the slack time e

i

of each operation i (in the nonfuzzy case all the e
i
 are equal to d

n + l
– r

0
–

S
i
n
= 1

p
i
). Two possible algorithms are:

(1)

ri = r0 + pj

j =1

i –1

∑ , i = 1, n;

di = dn +1 − pj

j = i +1

n

∑ ,      i = 1, n;

ei = di − ri − pi , i = 1, n.
(2)

ri +1 = r0 + pj

j =1

i

∑ ,       i = 0, n;

di = dn +1 − pj

j =i+1

n

∑ ,        i = 1, n;

ei = di −1 + pi − ri+1,        i = 1, n;

Note that d
i – 1

 and r
i + l

 are respectively the latest starting time and the
earliest ending time of operation i.

When the processing times are fuzzy and now denoted ~pi
, the fuzzy

earliest starting times and latest ending times determined using both
algorithms are the same. But the fuzzy slack times are different. For the
first algorithm, we have

~ei, 1
= ~d

i
* ~ri

* ~pi

= ~d
n+l

* ~pi + 1
* · · ·* ~pn

* ~r0
* ~p1

* · · ·* ~pi – 1
* ~pi

= ~d
n+l

* ~r0
* ( ~p1

% · · ·% ~pn
),

~ei, 2
= ~d

n+l
* ~pi

* ~pi + 1
* · · ·* ~pn

% ~pi
* ~r0

* ~p1
* · · ·* ~pi

= ~d
n+l

* ~r0
* ( ~p1

% · · ·% ~pn
) * ~pi

% ~pi
≠ ~ei, 1
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(for the use of % and * see II.2.B.d.b). Specifically, ~ei, 2
 depends on i, but

not ~ei, 1
.

Although the above example is somewhat artificial, the same situation
may occur in more realistic algorithms without necessarily being easy to
detect. Obviously, here the first fuzzified algorithm is the right one—the
second generates redundant fuzziness; but sometimes deciding which is the
right algorithm may be more tricky.

When using a fuzzified algorithm, we must make sure that the structure
of the mathematical expressions involved reflects the direct logical chain of
inferences that gave birth to the algorithm. The transformation of a
fuzzified algorithm into a more efficient version must be performed very
carefully because some classical mathematical manipulations are no longer
authorized with fuzzy quantities.

e. Conclusions

The preceding sections have demonstrated that a fuzzy algorithm (i.e., a
set of fuzzy instructions) can be viewed

(1) as a family of nonfuzzy algorithms that are executed in parallel
(Santos, approach see b.d.) unless only one of them is chosen for execution
(Tanaka and Mizumoto,s approach, see b.e.);

(2) as a single algorithm that processes fuzzy data in a deterministic
fashion.

From the semantic point of view, another dichotomy exists regarding the
intended purpose of a fuzzy algorithm. In that respect, two general kinds
of algorithms that are fuzzy exist. The first consists in ordinary algorithms
that realize an implementation of fuzzy models. The aim of such algo-
rithms is to deduce the fuzziness of the outputs knowing that of the inputs
and/or of the model. In other words, what is obtained are possibility
distributions on the actual nonfuzzy output values of the modeled process.
However, when a human subject is presented with a fuzzy instruction, the
action he performs will not be fuzzy. Thus, another kind of algorithms
exists; these algorithms are fuzzy descriptions of nonfuzzy actions, in the
sense of b.e. The result is always a sequence of precise actions. This type of
algorithm can be considered as involving some decision process, while the
other one bears a forecasting purpose. Combinations of both types can be
imagined. For instance, when the next action to be performed is condi-
tioned by an observation, and the observed situation realizes a trade-off
between two prototypes of situations, an interpolation (in the sense of
approximate reasoning) can be performed in order to generate a fuzzy
instruction that is more suitable than the precalculated ones. Then a best
interpretation can be determined.
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Four classes of fuzzy algorithms were described by Zadeh (1973), each
corresponding to a particular type of application:

(i) Fuzzy definitional algorithm this is “a finite set of possibly fuzzy
instructions which define a fuzzy set in terms of other fuzzy sets or
constitute a procedure for computing the grade of membership of
any element of the universe in the set under definition”—for
instance, the concept of “oval”. Used as an identificational device,
the algorithm yields a nonfuzzy result.

(ii) fuzzy generational algorithms: this serves to generate rather than
define a fuzzy set—for instance, generation of “handwritten” char-
acters. Note that the fuzzy generation of a character is different
from the generation of fuzzy characters.

(iii) fuzzy relationa1 and behavioral algorithm: this serves to describe
relations between fuzzy variables. “A relational algorithm which is
used for the specific purpose of approximate descriptions of the
behaviour of the system will be referred to as a fuzzy behavioral
algorithm.” Usually such an algorithm will yield fuzzy output; but
if it is embedded in a feedback control system, these outputs have
to be defuzzified.

(iv) fuzzy decisional algorithm: this provides an approximate descrip-
tion of a strategy or decision rule. Obviously, the result of such an
algorithm cannot be fuzzy when a strategy is actually applied.

Fuzzy algorithms could be used for the solution of difficult mathemati-
cal programming problems. Note that a heuristic method is a nonfuzzy
approximation of fuzzy algorithms, expressed in an ordinary programming
language. In the field of combinatorial problems the only possible solution
methods are often of implicit enumeration type, for instance, branch and
bound methods. Finding a solution is equivalent to finding a path in a
solution tree. A method is efficient if it builds an optimal path very
quickly. The key factors in a branch and bound method are the choice of a
separation variable at a given node of the solution tree, the choice of the
following node to explore, and the computation of good bounds on the
value of the criterion for the unexplored nodes. Some approximate rules
are known for determining a good strategy for these choices from the
structural features of the data. These rules are very often fuzzy and could
be implemented in the framework of a fuzzy decisional algorithm to
analyze the set of data at each node of the solution tree.
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Chapter 4
FUZZY MODELS FOR
OPERATIONS RESEARCH

This brief chapter is intended to present the state of the art concerning
the application of fuzzy sets to theoretical operations research. The con-
ceptual framework for optimization in a fuzzy environment is first re-
viewed and particularized to fuzzy linear programming. In the second part
some existing definitions of fuzzy graph theory are stated. Lastly, some
very well-known shortest-path algorithms are extended to graphs where
distances between vertices are fuzzy.

A.   OPTIMIZATION IN A FUZZY ENVIRONMENT

Optimization models in operations research assume that the data are
precisely known, that constraints delimit a crisp set of feasible decisions,
and that criteria are well defined and easy to formalize. However, in the
real world such assumptions are only approximately true. This section
presents the existing conceptual framework for optimization in a fuzzy
environment. The linear case is then studied more particularly.

a.   General Formulation

Let X be a set of alternatives that contains the solution of a given
multicriteria optimization problem. Bellman and Zadeh (1970) pointed out
that in a fuzzy environment goals and constraints formally have the same
nature and can be represented by fuzzy sets on X. Let C

i
 be the fuzzy
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domain delimited by the ith constraint (i = 1, m) and G
j
 the fuzzy domain

associated with the jth goal (j = 1, n). G
j
 is, for instance, the optimizing set

of an objective function g
j
, from X to R (see II.4.B.a). When goals and

constraints have the same importance, Bellman and Zadeh (1970) called a
fuzzy decision the fuzzy set D on X

  

D = Ci

i = 1, m
I









 I Gj

j = 1, n
I









 , (1)

that is,

∀ x ∈X, µD x( ) = min min
i = 1, m

µCi
x( ), min

j = 1, n
µGj

x( )





A fuzzy decision is pictured in Fig. 1 and corresponds to a constraint “x
should be substantially greater than x

0
” and an objective function g whose

optimizing set is G.
The final decision x

f
 can be chosen in the set M

f
 = { x

f
, m

D
(x

f
) > m

D
(x),

;x [ X}. M
f
 is called the maximal decision set.

When criteria and constraints have unequal importance, membership
functions can be weighted by x-dependent coefficients α

i
 and b

j
 such that

∀ x ∈X, α i x( ) + β j x( ) = 1
j = 1

n

∑
i = 1

m

∑ ,

and we have according to Bellman and Zadeh (1970)

µD x( ) = α i x( )µCi
x( )

i = 1

m

∑ + β j x( )µGj
x( )

j = 1

n

∑ . (2)

Note that D satisfies the property (see II.1.E.b)

  

Ci

i = 1, m
I









 I Gj

j = 1, n
I









 ⊆ D ⊆ Ci

i = 1, m
U









 U Gj

j = 1, n
U









 .

However, other aggregation patterns for the µCi
 and µGj

 may be worth
considering (see IV.4).

Figure 1
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When criteria and constraints refer to different sets X and Y, respec-
tively, and there is some causal link between X and Y, a fuzzy decision
can still be constructed. X is, for instance, a set of causes constrained by
C

i
, i = 1, m, and Y a set of effects on which is defined a set of fuzzy goals

G
j
, j = 1, n. Let R be a fuzzy relation on X × Y, the fuzzy decision D can

be defined on X by aggregation of the fuzzy domains C
i
 and the fuzzy

goals G
j
 + R – 1 induced from the G

j
.

The definition of an optimal decision by maximizing m
D
 (in the sense of

formula (1)) is not always satisfactory, expecially when m
D
(x

f
) is very low.

It indicates that goals and constraints are more or less contradictory, and
thus x

f
 cannot be a good solution. For such a situation Asai et al. (1975)

have proposed the following approach: choose an alternative that better
satisfies the constraints and substitute an attainable short-range goal for
the nonattainable original one. More specifically, we must find a pair
(x

C
, x

G
) where x

C
 is a short-range optimal decision and x

G
 a short-range

estimated goal and (x
C
, x

G
) maximizes

µD x, ′x( ) = min µC x( ), µG ′x( ), µR x, ′x( )( ). (3)

C and G are the fuzzy constrained domain and the fuzzy goal (we take
m = n = 1 for simplicity), and R expresses a fuzzy tolerance on the
discrepancy between the immediate optimal decision x

C
 and the fuzzy goal

G; x
G
 is the most reasonable objective because it is a trade-off between a

feasible decision and G. Note that when R is the identity, (3) gives (1). Asai
et al. (1975) discussed the choice of R and found that a likeness relation (R
is a distance, see II.3.C.c) was most suitable with respect to some natural
intuitive assumptions. The authors generalized their approach to the N-
period case where N short-range decisions must be chosen together with N
short-range goals and m

C
 and m

G
 may be time-dependent (see Asai et al.,

1975). Some definitions pertaining to time-dependency in fuzzy set theory
in the scope of planning may be found in Lientz (1972).

b.   Fuzzy Linear Programming

We deal now with the very common (in the literature!) situation when
constraints and criteria are linear functions of a set of variables.

α.   Soft Constraints

We start with the problem

minimize Z = gx
subject to Ax < b, x > 0, (4)

where g is a vector of coefficients of the objective function, b a vector of
constraints, and A the matrix of coefficients of the constraints. The fuzzy
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version of this problem is (Zimmermann, 1976, 1978):

x > 0. (5)

The symbol  denotes a relaxed version of < and assumes the existence
of a vector m of membership functions m

i
, i = 0, m, defined as follows: Let

a
ij
 and b

i
 be the coefficients of A and b, respectively; then, for i = 0, m,

  

µ i aij x j

j = 1

n

∑








 =

1                                   for   aij x j < bi ,
j = 1

n

∑

1 − 1
di

aij x j − bi

j = 1

n

∑








    for bi aij x j

j = 1

n

∑ < bi + di ,

0 for bi aij x j > bi + di

j = 1

n

∑

















(see Fig. 2) with b
0
 = Z

0
, a

0j
 = g

j
; d

i
 is a subjectively chosen constant

expressing a limit of the admissible violation of the constraint i. Z
0
 is a

constant to be determined.

Figure 2

The fuzzy decision of the problem (5) is D such that

µD x( ) = min
i

µ i aij x j

j=1

n

∑








 .

The maximization of m
D
 is equivalent to the linear program

maximize x
n + 1

subject to x
n + 1

 < µ i aij x j

j = 1

n

∑








 ,     i = 0, m, (6)

x
n + 1

 > 0.

The constant Z
0
 + d

0
 is determined by solving the above problem (6)

without the constraint i = 0 ; let x be its solution, we state Z
0
 + d

0
 = gx

and Z
0
 is defined as the optimal value of the objective function in problem

(4) where b
i
 is replaced by b

i
 + d

i
, ;i (see Sommer and Pollatschek, 1976).
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N.B.:  1.  Constraints such as Ax > b or Ax = b can be softened in a
similar way (see Sommer and Pollatschek, 1976).

2. The same problem was also studied by Negoita (1976) and Sularia
(1977), using the same approach.

3. Zimmermann (1978) solved the multicriteria linear programming
problem in the same way.

4. In the same paper (Zimmermann, 1978) he defines a fuzzy decision,
replacing min by product and compares the two formulations. Sommer
and Pollatschek (1976) use arithmetic mean instead of min.

5. Linear programming with soft constraints is very related to sensitiv-
ity analysis in linear programming.

b.   Fuzzy Constraints with Fuzzy Coefficients

What happens to a linear constraint A
i
x = b

i
 when the coefficents a

ij

and b
i
 become fuzzy numbers? ~A

i
x can be calculated by means of

extended addition % (see II.2.B.d.b). The symbol = can be understood in
two different ways:

first, as a strict equality between ~A
i
x and ~b

i
 (equality of the membership

functions); this equality can be weakened into an inclusion ~A
i
x # ~b

i
 which

also reduces to equality in the nonfuzzy case; the fuzziness of ~b
i
 is

interpreted as a maximum tolerance for the fuzziness of ~A
i
x;

secondly, as an approximate equality between ~A
i
x and ~b

i
 in the sense of

II.1.E.c.

Both points of view will be successively investigated. We assume here
that the variables are positive (x > 0) and ~a

ij
 and ~b

i
 are L-R fuzzy numbers

(see II.2.B.e.α). See also Dubois and Prade (1978b).

(i) Tolerance Constraints

Consider the system of linear fuzzy constraints

Ãix ⊆  b̃i ,     i =  1, m.

Since the coefficients are L-R fuzzy numbers, we can write symbolically

Ai = Ai , Ai , Ai( )
LR

where A
i
, A

i
, and Ai  are vectors of mean values and left and right spreads.

Since the xj  are positive, the system is equivalent to

A
i
x = b

i
,    Ai x  < bi ,    Ai x < bi ,    i = 1, m,    x > 0.

which is an ordinary linear system of equalities and inequalities. According
to the value of m and the number n of variables involved, it may or not
have solutions.
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Owing to this result, the “robust programming problem” (Negoita, 1976)

maximize  gx

subject  to Ãix ⊆ b̃i , i = 1, m,

x 0           

can be turned into a classical linear programming problem having 3m
constraints. This approach seems more tractable than that of Negoita
(1976).

(ii) Approximate Equality Constraints

Let ~a and ~b be two fuzzy numbers with ~a = a, a, a( )LR
 and ~b =

b, b, b( )RL
. Recall that in II.2.B.g ~a is said to be greater than ~b, denoted

~a > ~b, as soon as a – b > a + b . ~a is said to be approximately equal to ~b iff
neither ~a > ~b nor ~b > ~a holds.

A system of approximate equalities in the above sense can be consid-
ered, i.e.,

~A
i
x . ~b

i
,    i = 1, m,

where ~A
i
 is a vector of L-R fuzzy numbers, ~b

i
 an R-L fuzzy number, and

. denotes approximate equality. This fuzzy system is equivalent to the
nonfuzzy one

b
i
 – A

i
x < bi + Ai x     when    0 < b

i
 – A

i
x,

A
i
x – b

i
 < bi + Ai x     when    0 < A

i
x – b

i
.

The above approach assumes the existence of an equality threshold (see
II.2.B.g).

An alternative approach can be, as in a, to define the constraint domain
associated with an approximate equality ~A

i
x . ~b

i
 by the membership

function m
i
 such that m

i
(x) = hgt(A

i
x > b

i
). More specifically,

  

µ i x( )  =  

R
bi − Aix

bi + Aix









     if     bi −  Ai x >  0,

L
Aix− bi

bi + Ai x













    if     Ai x −  bi >  0.













The problem of finding x
f
, maximizing min

i = 1, m
 m

i
(x), the optimal deci-

sion with respect to the m fuzzy constraints, can be thus reduced to a
nonlinear program (see Dubois and Prade, 1978b).

N.B.:  1.  The approach in (ii) can be extended to fuzzy linear objec-
tive functions and to linear approximate inequality constraints. Moreover,
(i) and (ii) can be generalized to fuzzy variables.

>
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2.  Systems of linear equations with interval-valued coefficients were
already considered in Hansen (NF 1969). (See also Jahn, 1974.)

B.   FUZZY GRAPHS

Graph theory plays an important role in the modeling of structures,
especially in operations research. Fuzzy graphs may be helpful for repre-
senting soft or ill-defined structures, for instance, in humanistic systems. A
graph is traditionally a pair G = (V, E) where V is a finite set of vertices
and E a nonfuzzy relation on V × V, i.e., a set of ordered pairs of vertices;
these pairs are the edges of G. A detailed exposition of graph theory and
related algorithms can be found in Roy (NF 1969–1970).

a.   Fuzzy Vertices, Fuzzy Edges

A fuzzy graph ~G is a pair (~V, ~E) where ~V is a fuzzy set on V and ~E is a
fuzzy relation on V × V such that

µ
Ẽ

υ, ′υ( ) < min µ
Ṽ

υ( ), µ
Ṽ

′υ( )( ).
This definition is from Rosenfeld (1975).

The above inequality expresses that the strength of the link between two
vertices cannot exceed the degree of “importance” or of “existence” of the
vertices. In other words ~E is a fuzzy relation on ~V × ~V in the sense that
dom(~E) and ran(~E) (see II.3.B.a) are contained in ~V. However, in some
situations it may be desirable to relax this inequality.

Classical concepts and definitions pertaining to graphs have been ex-
tended to fuzzy graphs:

A path whose length is n in a fuzzy graph is a sequence of distinct
vertices υ

0
, υ

1
, . . . , υ

n
 such that m

~E
(υ

i – 1
, υ

i
) > 0 ;i = 1, n. The strength of

the path is min
i = 1, n

 m
~E
(υ

i – 1
, υ

i
) and m

~V
(υ

0
) if n = 0. A strongest path

joining two vertices υ
0
 and υ

n
 has a strength µ

˜̂E
(υ

0
, υ

n
) where ˜̂E  is the

transitive closure of ~E (see II.3.B.c.α) (Rosenfeld 1975).
In an ordinary graph the distance between two vertices is the length of

the shortest path linking them. A set U of vertices is called a cluster of
order k iff:

(i) ;υ, υ′ [ U, d(υ, υ′) < k,
(ii) ;υ Ó U, 'υ′ [ U, d(υ, υ′) > k,

where d(υ, υ′) denotes the distance between υ and υ′. When k = 1, a
k-cluster is called a clique, i.e., a maximum complete subgraph. In a fuzzy
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graph a nonfuzzy subset U of V is called a fuzzy cluster of order k if

′υ ∈U

min
υ ∈U

µ
Ẽ k υ, ′υ( ) > max

υ ∉U
min

′υ ∈U
µ

Ẽk υ, ′υ( )

where ~E k is the kth power of ~E (see II.3.B.b.d) (Rosenfeld, 1975).
The following definitions assume that the set of vertices is not fuzzy and

~E is symmetrical (m
~E
(υ, υ′) = m

~E
(υ′, υ)). The degree of a vertex υ is dg(υ)

= µ
Ẽ

υ, ′υ( )
′υ ≠υ∑ . The minimum degree of G is δ(G) = minυ dg(υ).

G is said to be λ-degree connected (Yeh and Bang, 1975) iff:

(i) ;υ, υ′ [ V, m
~E
(υ, υ′) ≠ 0 (if υ ≠ υ′),

(ii) δ(G) > λ.

A λ-degree component of G is a maximal λ-degree connected subgraph of
G. For any λ > 0, the λ-degree components of a fuzzy graph are disjoint
(Yeh and Bang, 1975).

Yeh and Bang (1975) have given an algorithm for the determination of
λ-degree components of a finite symmetric fuzzy graph. Moreover, they
defined other kinds of connectivity and provided the corresponding de-
composition algorithms (Yeh and Bang, 1975). Other definitions related to
fuzzy graphs can be found in Rosenfeld (1975) (bridge, cut-node, forest,
tree, . . . ) and in Halpern (1975) (set-adjacency measures).

b.   Shortest-Path Algorithms for Fuzzily Weighted Graphs (Dubois
and Prade, 1978a)

In this section we consider fuzzily weighted graphs: i.e., for instance, to
each edge is assigned a positive weight that represents the “length” of the
edge. Shortest-path algorithms have a common feature: they require only
additions and comparisons. It is thus easy to fit these algorithms to fuzzy
weights, thanks to the extended addition % and subtraction * together
with the max and min  operators.

α.   Floyd’s Algorithm

As an example, let us first focus our attention on Floyd’s algorithm
(Floyd, NF 1962) for symmetric connected graphs. Let G = (V, E) be such
a nonfuzzy graph. Let w

ij
 be the weight of the edge (υ

i
, υ

j
) belonging to E.

Let l
ij
 be a value assigned to each pair of vertices (υ

i
, υ

j
). At the beginning

of the procedure we set l
ij
 = w

ij
 for (υ

i
, υ

j
) [ E, l

ij
 = ` for (υ

i
, υ

j
) Ó E and

i ≠ j, and l
ii
 = 0 ;υ

i
 [ V. The procedure consists in modifying the l

ij
,

replacing l
ij
 by min (l

ij
, l

ik
 + l

kj
) for υ

k
 ranging over V, υ

i
 ranging over

V – {υ
k
} and υ

j
 ranging over V for a fixed υ

i
. At the end of the procedure

l
ij
 is the length of a shortest path between υ

i
 and υ

j
. Obviously, this
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procedure can be readily extended to deal with fuzzy weights ~w
ij
 (~w

ij
 is

assumed to be a positive fuzzy number). At the beginning, set ~l
ij
 = ~w

ij
 for

(υ
i
, υ

j
) [ E and as above otherwise. Replace ~l

ij
 by min ( ~l

ij
, ~l

ik
 % ~l

kj
) where

k, i, j vary as indicated above.
The length of a shortest path between υ

i
 and υ

j
 may also be defined as

l
ij
 = min

k [ 3(i, j)
l
k
 where 3(i, j) is the set of all paths between i and j and

l
k
 the length of path k. l

ij
 is an increasing function of the w

kl
. The result of

Floyd’s algorithm is also an increasing function of the w
kl
. Both functions

coincide for nonfuzzy w
kl
. Hence, the extensions of these functions to fuzzy

numbers ~w
kl
 also coincide (as a consequence of Theorem 1 for n-ary

operations see II.2.B.a). Thus, the fuzzy Floyd algorithm does calculate the
fuzzy shortest distances between vertices.

Although the fuzzy shortest distance ~l
ij
 between υ

i
 and υ

j
 is still obtained,

a shortest path (or a set of shortest paths) whose length is ~l
ij
 does not

necessarily exist any longer. The identity ~l
ij
 = min

k [ 3(i, j)
~l
k
 is valid, but

because the min  of several fuzzy numbers does not necessarily yield one of
those numbers, it is possible that no path has fuzzy length ~l

ij
. A criticity

value of path k can be hgt(~l
k
 > ~l

ij
).

b.   Ford’s Algorithm

Another example is Ford’s algorithm (see, e.g., Roy, NF 1969–1970)
applied to a connected directed graph without loop where the vertices are
weighted. Let p

i
 be the positive weight of υ

i
. The vertices represent, for

instance, a set of tasks and E the precedence constraints between the tasks.
υ

i
 is assumed to have a fuzzy weight, i.e., the ill-known processing time ~p

i

of the task υ
i
. Let P(i) and S(i) be respectively the set of vertices

immediately preceding υ
i
 and the set of vertices that immediately follow υ

i
.

The classical formulas giving the earliest starting time r
i
 and the latest

ending time d
i
 of the task υ

i
 become

  
r̃i =

υ j ∈P i( )
r̃ j % p̃j( ),      d̃i =

υ j ∈S i( )
d̃ j * p̃j( ),

where ~r
i
 and ~d

i
 are respectively the fuzzy earliest starting time and the

fuzzy latest ending time of task υ
i
. The fuzzy earliest starting time (resp.

latest ending time) of the tasks without predecessor (resp. successor), which
are used to initialize the procedure, may be also fuzzy. It is easy to see that
the above fuzzification of Ford’s algorithm is valid in the sense of 3.B.d.
Note that, owing to the use of L-R fuzzy numbers (see II.2.B.e), the fuzzy
versions of the Floyd and Ford algorithms do not require much computa-
tion.

The case of a fuzzily weighted fuzzy graphs is considered in Dubois and
Prade (1978a).

max min
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Part IV
SYSTEMS-ORIENTED
FUZZY TOPICS

In the field of systems science there are many common situations that
are pervaded by fuzziness. Classical models and methods dealing with
these situations must thus be revised in order to take this basic aspect into
account. Most work concerned with this is still at an early stage of
development, and in most problems no general methodology is yet avail-
able. However, several fuzzy approaches seem worth considering and some
have already yielded promising results.

After a first chapter devoted to the estimation of membership functions,
nine system-oriented topics are surveyed from a fuzzy-set-theoretic point
of view: knowledge representation and natural language, decision-making,
control, learning, pattern classification, diagnosis, structural identification,
games, and catastrophe theory. These chapters have unequal length ac-
cording to the respective states of the art.

253



.



Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

255

Chapter 1
WHERE DO “THEY”
COME FROM?

A very widespread question about fuzzy set theory is, From what kind of
data and how can membership functions actually be derived? Answering
this question is very important for practical applications. Another problem
is to check whether the choices of fuzzy set-theoretic operators have an
experimental basis.

A.    INFORMAL PRELIMINARY DISCUSSION

The membership function is supposed to be a good model of the way
people perceive categories. Experiments made by psychologists showed a
distinction between central members of a category and peripheral mem-
bers. If subjects have to respond true or false to questions of the form Does
x belong to such a category?, the response time is shorter if x is a central
member (i.e., a good example of the category) than if it is a peripheral one
(i.e., a not very good example of the category); see Lakoff (1973) for more
details. The existence of classes of central and peripheral elements in a
category reminds us of flou sets (see II.1.G.c) which seem to thus have an
intuitive basis.

Clearly, category membership is not always a yes-or-no matter, but
rather a matter of degree. However, Lakoff (1973) pointed out that some
speakers seem to turn relative judgments of category membership into
absolute judgments by assigning the member in question to the category in
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which it has the highest degree of membership. Since category membership
is a matter of degree, the question naturally arises as to what determines
the degree of membership for each element. One common hypothesis is
that there is a prototype for each category, and the degree of membership
for each item is directly related to the similarity of the item to the
prototype. But, as indicated by Oden (1977a), the prototype may be an
ideal element that does not lie in the category (the corresponding fuzzy set
will not be normalized) or, on the contrary, the category may have multiple
and noncomparable prototypes.

Although fuzzy set theory is capable of dealing with degrees of set
membership, the membership function is not a primitive concept from a
psychological point of view. A membership value is generally not abso-
lutely defined; take for example the concept of tallness; how one perceives
other people’s tallness may depend upon what one’s height is. Undoubt-
edly, the membership function itself is fuzzy; as soon as it has a good
shape, it can be considered a satisfactory approximation. According to
Lakoff (1973), the membership function is perceived more like a contin-
uum than a discrete set of membership values, although it may be sampled
for practical purposes. The choice of continuous set-theoretic operators is
consistent with fuzzy knowledge of membership functions: a slight modifi-
cation of the membership values does not drastically affect the rough
shape of the result of a set operation. To take into account the imprecision
of membership functions, we may think of using type 2 fuzzy sets (II.1.G.
d), probabilistic sets (II.1.G.e), tolerance classes of fuzzy sets (II.3.F.e), or
level 2 fuzzy sets (II.2.C.a). Estimating the membership function of such
higher order fuzzy sets is certainly more difficult than in the case of
ordinary fuzzy sets, but the parameters of higher order fuzzy sets tolerate
less-precise estimation. On the whole, ordinary membership functions will
be sufficient for an approximate quantitative representation of this intrinsi-
cally qualitative notion, that is gradual category membership.

Remark  In the framework of experiments on human height, MacVicar-
Whelan (1977) noticed that the location of the boundary of a fuzzy set
such as “tall” seems “to be equiprobable within some range of values.”

B.    PRACTICAL ESTIMATION OF MEMBERSHIP FUNCTIONS

The problem of practical estimation of membership functions has not
been systematically studied in the literature. Nevertheless, some ideas and
methods have been suggested by several authors, independently.
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a.   Exemplification  (Zadeh, Reference from III.3, 1972)

Let U be a universe of objects and A the name of a fuzzy set on U. µ
A

can be estimated from partial information about it, such as the values that
µ

A
 takes at a finite number of samples in U. “The definition of a fuzzy set

by exemplification is an extension of the familiar linguistic notion of
extensive definition.” “The problem of estimating the membership function
of a fuzzy set in U from the knowledge of its values over a finite set of
points in U is the problem of abstraction which plays a central role in
pattern recognition.”

Example  In order to build the membership function of A = “tall”, we
may ask a person whether a given height h is tall. To answer the person has
to use one among several possible linguistic truth-values, e.g., true, more or
less true, borderline, more or less false, false. The simplest method is then to
translate these linguistic levels into numerical ones: 1, 0.75, 0.5, 0.25, 0,
respectively. A discrete representation of the membership function is thus
obtained by repeating the query for several heights.

b.   Deformable Prototypes (Bremermann, 1976)

The idea behind this method is quite simple. Let P be a prototype that
can be deformed by manipulating parameters p

1
, . . . p

n
. Given an object,

one attempts to deform the prototype such that a maximal matching is
obtained. The dissimilarity D between the object x and the prototype
depends both on the minimal “distance” between them and the distortion
“energy” of the deformation. Formally, we write

D(x) = min
p1, . . . ,pn

(m(x; p1, . . . , pn ) + wδ ( p1, . . . , pn ))

where m is a distance function between x and the prototype and d is a
distortion function weighted by w. A membership function µ

p
 can then be

defined as

m
p
(x) = 1 – (D(x) / sup D).

c.   Implicit Analytical Definition (Kochen and Badre, 1976)

The membership function is assumed continuous and differentiable and
to have an S shape (i.e., we are concerned with fuzzy sets on R). Consider,
for instance, the adjective A = large. The marginal increase of a person’s
strength of belief that “x is A” is assumed proportional to the strength of
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his belief that “x is A” and the strength of his belief that “x is not A.”
That is,

d µ A

dx
(x) = k µ A(x)(1− µ A(x)),

whose solution is

µ A(x) = 1 / (1+ ea−bx ).

The parameters a and b are estimated from statistical data. Thus, the
above method is more a justification of a shape than a quantitative
estimation procedure.

d. Use of Statistics

Membership functions can be estimated through polls, i.e., m
A
(x) is the

proportion of positive answers to the question, Does x belong to A? The
implicit assumption is that the probability of a positive answer from a
questioned person increases with the value m

A
(x); more specifically, the

probability of a positive answer is proportional to m
A
(x). This method was

used by Hersh and Caramazza (1976).
In the social sciences Nowakowska (1977) gave a measurement tool for

estimating the membership value of a person x in a social group A. Her
assumption is: if a subject x is asked about his membership in a fuzzy set
A, the probability of a positive response is an increasing function of the
value m

A
(x).

Lastly, another method may be considered: given a set of statistical data
in the form of a histogram, the induction from it of a possibility distribu-
tion is different from that of a probability distribution. In the first case the
histogram is normalized through an affine transformation that brings the
highest ordinate to 1; in the latter case the surface of the histogram is
brought to 1. When thus determining a possibility distribution, we postu-
late that from global precise knowledge about a population of events, we
can induce local imprecise knowledge about any element of this popula-
tion. This latter assertion assumes that the population is homogeneous in
some sense. More specifically, recall the possibility-probability consistency
principle (II.5.B.c), which says that the possibility of an event is always
greater than or equal to its probability. Let h be a function from R to R

+,
representing a smoothed histogram. The associated possibility and proba-
bility distributions should satisfy for any union D of disjoint intervals

(D)∏ = sup
x ∈D

h(x) / sup h> Prob(D) = h
D∫ (x)dx/ h

−∞

+∞

∫ (x)dx (1)
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Figure 1

according to the consistency principle. The above inequality does not hold
for any positive function h. However, functions such as

  

h(x) =
c ∈R+ ∀ x ∈I,

0 otherwise,





where I is an interval;

h(x) = max(0, α(1 – | x | / l))   (triangular function),

and

h(x) = e– α | x |    for  α > 0

satisfy the above inequality. But it is false for the function pictured in Fig.
1, which may be regarded as “nonhomogeneous.” Thus, it seems that only
a histogram satisfying inequality (1) may be used to derive a possibility
distribution consistent with the probability distribution issued from the
histogram.

e.   Relative Preferences Method (Saaty, 1974)

Let A be a fuzzy set on a discrete universe U. The membership values
m

A
(x

i
) = w

i
 for x

i
 [ U are calculated from a set of data representing the

relative membership values t
ij
 of an element x

i
 in A with respect to the

membership of an element x
j
 in A. Saaty uses a scale divided into

seventeen levels {
9
1,

 8
1, . . . , 

2
1, 1, 2, . . . , 8, 9}; each level has a semantic

interpretation: the larger t
ij
, the greater the membership of x

i
 compared

with that of x
j
. The matrix T of the t

ij
’s is such that t

ij
 = 1 / t

ij
. T is said to

be consistent iff 'w = (w
1
 , . . . , w

n
) with n = 1 |U|, such that t

ij
 = w

i
/ w

j

;
i
, ;

j
. When T is consistent, T is transitive in the sense that

;i, j, k,   t
ij
t
jk

= t
ik
;

the rank of T is 1; the eigenvalues of T are 0, except one whose value is
n = |U|; w is an eigenvector of T.



260IV.1.  Where Do “They” Come From?

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

A way of evaluating the inconsistency of T is to calculate the difference
between the greatest eigenvalue of T and the greatest ideal eigenvalue, i.e.,
n. The membership values w

i
 can be determined by finding the eigenvector

of T such that T ⋅ w = nw, where T is assumed as consistent as possible.
This method seems appealing from a theoretical point of view when there
is no prototype for the class A, but its practical applicability is limited by
the size of U 3 U and by the difficulty of collecting consistent data.
Moreover, the “arbitrariness” of the membership values is somewhat
replaced by that of the t

ij
.

f.   Comparison of Subsets (Fung and Fu, 1974)

Suppose A is a fuzzy set of U with a membership function m
A
; a fuzzy

set ~A on 3(U) is induced from A, provided that U is finite, though the
formula

µ
Â

x1, . . . , xk{ }( ) = 1
k

µ A(
i = 1

k

∑ xi ).

This definition has the intuitive meaning of an “average membership” of
{x

1
, , . . . , x

k
} in A.

A “preference” relation, denoted > is defined in 3(U) by

;S
1
, S

2
 [ 3(U),   S

1
> S

2
    iff   m

~A
(S

1
) > m

~A
(S

2
).

The interpretation of S
1
 > S

2
 is “S

1
 matches A better than S

2
.” The data

form a set of “preferences” between subsets of U; they can be translated,
using the definition of m

A
, into a system of inequalities relating the

membership values. These inequalities determine more or less strongly the
m

A
(x

i
). Other inductions of ~A from A are possible. The applicability of the

method is limited by the size of 3(U). The “arbitrariness” now mainly lies
in the induction process.

g.   Filter Function (MacVicar-Whelan, 1978)

MacVicar-Whelan introduced filter functions in order to identify the
membership functions of fuzzy sets modeling adjectives such as tall in the
framework of an experimental study of human height.

A filter function F is characterized by two parameters, the location NP of
the neutral point (F(NP) = 

2
1) and the width 2w of the transition between

nonmembership and membership. We are here interested in S-shaped
fuzzy sets of R.
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Figure 2

More specifically,

F(x; NP,w) =

0

(1 / 2 w)(x − NP + w)

1   







if    x ∈(− ∞, NP − w]
if    x ∈ NP − w, NP + w[ ],
if    x ∈ NP + w, ± ∞[ ].

F is pictured in Fig. 2. MacVicar-Whelan points out that a sophistication
of the shape of the transition is useless because of the imprecision.

The concept of tallness is here related to a given population for which a
normal probability distribution on the heights is known. Let x# and s be the
parameters of this distribution. “A person is tall” is supposed to mean “this
person has a large height,” where large is modeled by the membership
function m such that

m(x) = F (x; x# + αs, βs)     where    x is a height.

α and β have to be determined experimentally. And small is modeled in
the same way by 1 –F(x; x# – αs, βs).

h.    Concluding Remarks

What is striking in the methods presented above is their lack of general-
ity. For instance, it seems that there is no rule like maximum likelihood for
probabilities to estimate possibilities. Anyway, it seems more important to
become aware of how the human mind manipulates names of fuzzy sets
than to figure out precisely numerical grades of membership since the
perception process is itself fuzzy.

N.B.:  Fuzzy measures must also be estimated; some hints on this
problem are provided by Sugeno (Reference from II.5, 1977).

C.    IDENTIFICATION OF FUZZY  SET OPERATORS

Some experiments concerning the verification of the accurateness of
fuzzy set operators have been reported in the literature.
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In Hersh and Caramazza (1976) a group of people judge the size of
black squares by means of 13 qualifiers such as “small,” “large,” “not
small,” “very large,” “either small or large.” Each person assigned a
binary grade to each pair black square/qualifier. Membership functions
were constructed as described in B.d. Complementation to 1 was shown to
be a good model for negation, and max for either . . . or. In another
context Oden (1977b) found that probabilistic operators (+^, ⋅) were more
suitable for modeling disjunction and conjunction.

Zimmermann (1978) pointed out that the and operator could be either
logical or compensatory. Empirically, he found that the min operator was a
good model for logical and; on the contrary, the compensatory and ex-
presses an aggregation of aspects which is not necessarily a conjunction—
for instance, when we say that a car is attractive because it is fast “and”
pretty. In this latter case the “and” may be translated by a product, an
arithmetic mean, a geometric mean, etc. according to the situation, but
rarely by min. The compensatory and is very common in decision-making.
Other experiments were carried out by Rödder (1975).

The hedge “very” has also received particular attention in the literature.
Zadeh (Reference from II.2, 1972) has conjectured that m

veryA
(x)

= [m
A
(x)]2. Since then, Lakoff suggested that “very” operated also a

translation, i.e., m
veryA

(x) = m
A
(x – c)]2. Experimental verifications were

carried out by Hersh and Caramazza (1976), who confirmed that the hedge
modification involved some translation. Moreover, Kochen and Badre
(1976) found that “very A” could be less fuzzy than A, which is consistent
with squaring the membership function. In the context of his study of
human height and the concept of tallness, MacVicar-Whelan (1978) empir-
ically determined that the membership function of “very large” could be
F(x;x# + 2αs, βs) (see B.g), i.e., a translation of αs. However, considering
other studies on the hedge “very” in other contexts, he indicated that the
shift could be more multiplicative than additive.

In natural language connectives and hedges are sometimes ambiguous
and have no “universal” meaning. For instance, “and” may be as well
logical as compensatory, the “or” may be “exclusive” or “inclusive,”
“very” may indicate an increase in precision (e.g., “very medium”) or a
change of category. Implicit categorization of the universe of discourse
into different concepts has great influence on meaning. For example,
consider a universe of heights roughly divided into “large heights” and
“small heights”; then “not large” may be identical to “small,” and “very
large” is an increase in precision of “large.” When the categorization is
refined into “1arge,” “medium,” and “small,” then “not large” will mean
“small or medium.” Lastly, if we add the categories “very small” and “very
large,” now “1arge,” means “large and not very large,” and “very large” is
no longer more precise than “large.” Note that the human mind can
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perceive only a small number of categories. Moreover, some aggregations
of hedges, such as “not very large,” may have an ambiguous structure: is it
to be understood as “not (very large)” or “(not very) large”?

D.   TOLERANCE ANALYSIS USING FUZZY SETS

Fuzzy sets not only model subjective categories, they may refer to the
possibility of events, for instance, in the framework of tolerance analysis,
as first suggested by Jain (Reference from II.2).

The tolerance interval of a measurement is the interval where it is
possible that the actual value lies. More specifically, a flat fuzzy number
(see II.2.B.e.7.η) can be viewed as a tolerance interval with no sharp
boundary. A fuzzy set of R with several distinct maxima can model a set of
imprecise measures of a given phenomenon. The membership value of a
maximum may express the degree of relative reliability of the information
that lies in it, while spreads model the imprecision and the fuzziness.

The use of fuzzy sets in tolerance analysis may throw some light on a
well-known problem in measure processing: let M

1
 , . . . , M

n
 be n approxi-

mate measures obtained by means of several devices under the same
operating conditions and which evaluate some quantifiable property of a
given phenomenon. The M

i
 are assumed to be normalized fuzzy sets on R.

How are they to be processed, especially in the case where n is too small,
so that probability theory cannot be applied? Let M be the result of the
aggregation of the M

i
. M = >

i
M

i
 is an optimistic one: it assumes invari-

ance of the phenomenon, reliability of all measurement devices, and
“closeness” of the M

i
. When these assumptions are lacking, >

i
M

j
 is no

longer normalized, and this aggregation is not very reliable; in that case
<

i
M

i
 is a most valid aggregation. (1 /n) ⋅ (%

i
M

i
) may be a trade-off

between the union and the intersection of the M
i
 in the sense that the

fuzziness of this result is an average of the fuzziness of the M
i
’s.

Note that when >
i
M

i
 is not normalized, the gain in precision is

counterbalanced by a loss in reliability, which makes the precision some-
what delusive; <

i
M

i
 is more reliable but less precise.

If the M
i
 are not equally reliable, two approaches may be considered.

Let r
i
 [ [0, 1] be the reliability of M

i
. Two possible aggregation formulas

are M = <
i
r

i
M

i
 or M = >

i
M

i
ri (see III.2.F.c) where the M

i
 are still

normalized in both cases.
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Chapter 2
FROM PROGRAMMING
LANGUAGES TO NATURAL
LANGUAGES

Natural languages are fuzzy in many respects. Traditional programming
languages are not. The gap between them has been slightly reduced by the
conception of some fuzzy programming languages. A brief survey of the
corresponding works is provided in the first section. The second is devoted
to the representation and interpretation of natural language sentences by
means of fuzzy sets, according to Zadeh. Lastly, the application of natural
language modeling to the representation of fuzzy dynamic systems is
emphasized.

A.   FUZZY PROGRAMMING LANGUAGES

Umano et al. (1978) have proposed the implementation for fuzzy-sets
manipulation of a system that is a fuzzy version of the set-theoretic data
structure (STDS) of Childs (NF 1968). The system, called FSTDS (fuzzy
STDS) consists of a simple interpreter, a collection of fuzzy-set operations,
and a data structure. The aim of the system is to make possible set-
theoretic manipulations of type n, level l  fuzzy sets, and L-fuzzy sets
without paying attention to their representation in the computer. FSTDS is
imbedded in FORTRAN, “because of its high portability.” It has no
control structure; however, owing to the connection between FSTDS and
FORTRAN, it is possible to use FORTRAN control structures instead.

Fellinger (1974) has described a fuzzy system modeling language FSML
which allows specification of individual nonfuzzy objects that may have

265
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fuzzy attributes. In order to visualize partial execution of conditional fuzzy
instructions, the author uses a modified version of Petri nets (Holt, NF
1971), called E-nets (Nutt and Noe, NF 1973), which he extends to deal
with fractional copies of tokens. This ability to reproduce tokens helps
simulate the execution of fuzzy instructions in models of fuzzy systems.

A fuzzified version of PL1, called L.P.L. (which stands for linguistic-
oriented programming language) has been developed by Adamo (1978a,
b). Statements in the L.P.L. Language are divided into basic statements
(including inference and assignment statements) and control statements.
Control statements are DO-END, IF-THEN-ELSE, PARALLEL, and
DO-WHILE structures. The DO-END structure is similar to the one in
PL1. The IF-THEN-ELSE structure is executed as described in III.3.B.c.g.
The DO-WHILE structure is an infinite set of nested conditional fuzzy
structures whose execution requires the solution of a recursive fuzzy
relational equation. The PARALLEL structure, which does not exist in
PL1, is needed to realize a symmetrical execution of statements such as

IF V = HIGH THEN perform statement 1

ELSE IF V = LOW THEN perform statement 2

ELSE do nothing

which, because it is fuzzy, does not provide the same results as

IF V = LOW THEN perform statement 2

ELSE IF V = HIGH THEN perform statement 1

ELSE do nothing

Adamo (1978c) used L.P.L. for solving combinatorial and syntactic pattern
recognition problems. The backtracking processes do not appear explicitly
in the corresponding programs, but are “implicitly imbedded in the seman-
tics.”

Fuzziness has also been introduced in artificial intelligence languages in
order to represent and manipulate fuzzy knowledge. An exhaustive survey
of the various approaches to the representation and processing of fuzzy
knowledge within the field of artificial intelligence was recently provided
by Wahlster (1977). Kling (1973) was the first to deal with this problem
and proposed a fuzzy version of PLANNER. The first fuzzy artificial
intelligence programming language which was actually implemented is
LeFaivre’s FUZZY. “FUZZY acts as a many-valued programming lan-
guage, in the sense that expressions can return both a value and a numeric
modifier (called Z-value), which may be interpreted as a truth-value,
degree of certainty, etc. . . . A fuzzy associative net is maintained by the
system and ‘procedure demons’ may be defined for the control of fuzzy
processes.” Pattern-directed data access, a procedure invocation mecha-
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nism, and a backtrack control structure are also available. FUZZY is
implemented in LISP (see Winston, NF 1977, for instance). FUZZY
procedures may be used to define fuzzy algorithms (LeFaivre, 1974a). A
description of another fuzzy artificial intelligence language is given by
Wechsler (1976), who uses the question-answering system QA4, and pro-
poses a model for medical diagnosis based on fuzzy procedural knowledge.

Other fuzzy programming languages are those of Mamdani (FSML,
1975) and Noguchi et al. (FLOU, 1976).

N.B.:  The paper by Chang and Ke (1978), concerned with the transla-
tion of “fuzzy queries,” does not actually refer to fuzzy set theory; it
actually deals with the interpretation of ambiguous questions in the frame-
work of a data base: “fuzzy queries can be disambiguated by analyzing the
queries against the information graph of a data base skeleton.”

B.    MODELING NATURAL LANGUAGES

Most of the sentences of a text in natural language contain fuzzy
denotations. Moreover, “the numerous meaning representation, knowledge
representation and query representation languages which have been de-
scribed in the literature . . . are not oriented towards the representation of
fuzzy propositions, that is propositions containing labels of fuzzy sets, and
hence have no facilities for semantic—as opposed to syntactic—inference
from fuzzy premises” (Zadeh, 1977a). Note that the fuzzy programming
languages surveyed in Section A do not aim at modeling natural language.
This section outlines Zadeh’s approach to this problem.

a.    The Concept of Meaning

By 1970, Zadeh (1971, 1972b) formalized the notion of “meaning” by
equating it with a fuzzy subset on a universe of discourse generated by a
kernel space.

A kernel space K can be any prescribed set of objects or constructs. In
general, K is not sufficient to embed the meaning of any concept because
some concepts may also involve n-tuples of elements of K and more
generally a collection of fuzzy subsets on K For instance, “much older
than” is a label for a fuzzy set on K 2; in this fashion the term “very” may
be equated with a subset of 3

~ 
(K) × 3

~ 
(K) since it is a function from 3

~
(K)

to 3
~ 
(K). This motivates the following definition (Zadeh, 1971).

Let K be a kernel space and E a set that contains K and which is
generated from K by a finite application of the operations of union,
cartesian product, and collection of fuzzy sets. Then a universe of discourse
U is a designated, not necessarily proper, subset of E.
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Now let U be a universe of discourse and T a set of terms that play the
roles of names of fuzzy sets on U. Let x be a term in T. The meaning of x,
denoted M(x), is the fuzzy subset on U whose membership function is
µ

N
(x, · ) where N is a naming relation on T × U (see III.3.A.i). µ

N
(x, · ) can

be viewed as a possibility distribution (Zadeh 1977a), i.e., it designates the
objects (in U) that x possibly names. M(x) may be specified in various
ways, e.g., “by a table or by a formula or by an algorithm or by
exemplification or in terms of other membership functions.” (Zadeh,
1972b).

When the term must designate a precise object of U, the principle of
“maximum meaningfulness” (Goguen, 1976) says that the “meaning” of
the term is the object that has the maximum membership value in the fuzzy
set named by the term.

b.    Hedges

One of the basic problems in semantics is to evaluate the meaning of a
composite term from knowledge of the meaning of each of its atomic
subterms. We consider here the meaning of composite terms of the form
h · x where h is a linguistic hedge such as “sort of,” “very,” . . . .The hedge
h is viewed as a modifier of the meaning of x. Zadeh (1972a) defined some
operators that may serve as a basis for modeling hedges:

normalization:  µnorm(A)
(u)= µ

A
(u) / (sup µ

A
);

concentration:  µ
con(A)

(u) = [µ
A
(u)]2;

dilation:  µ
dil(A)

(u)= [µ
A
(u)] 1

2 ;

contrast intensification:

µ int A( )(u) =
2µ A

2 (u) for µ A(u) ∈[0,0.5],

1− 2(1− µ A(u))2 otherwise.





Examples of models of hedges are:
very A = con(A)

more or less A = dil(A )
plus A = A1.25

slightly A = int[norm(plus A and not (very A))] .
Thus, a small number of basic functions can produce a wide range of

models of hedges. However, such an approach has some limits, which are
discussed at length in Lakoff (1973). Significantly, hedges such as “very”
are applied only to fuzzy concepts.

Remarks 1  Note that very A and more or less A can be viewed as
fuzzy α-cuts (see II.2.A.e.g), i.e., α-cuts with µα~(t) = t2 and t , respectively
(t [ [0, 1]).
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2  A formal logic approach to the hedge “rather” was proposed by
Kubinski (NF 1960). This approach strikingly contrasts with the one
presented here.

c.    Hierarchies of Fuzzy Concepts   (Zadeh, 1971)

A fuzzy concept or simply a concept is a fuzzy set on the universe of
discourse. Thus, if x is a term, then its meaning M(x) is a concept. It is
convenient to classify concepts according to their level (of abstraction)
which is a rough measure of the complexity of characterization of a
concept. More specifically, let K be the kernel space of the universe of
discourse U. Then a term x and the corresponding concept M(x) are at
level 1 if M(x) is a fuzzy subset on K n for some finite n; x and M(x) are at
level 2 if M(x) is a subset on [  ̃3(K)] n for some finite n. More generally, x
and M(x) are at level l if M(x) is a subset of [  ̃3 l – 1(K)] n for some finite n
where   ̃3 l – 1(K) stands for   ̃3(· · ·(  ̃3(  ̃3(K)))· · ·) with l – 1   ̃3s in the
expression. Note that when n = 1 and M(x) is a concept at level l, then it
is a level l fuzzy set on K (see II.2.C.a).

For example, K is a set of colored objects; then the concepts labeled
“white,” “yellow,” or “green” are at level 1 because they can be repre-
sented as fuzzy sets on K; likewise the concepts labeled “redder than,”
“darker than” are at level 1 because they can be represented as fuzzy sets
on K 2. On the other hand, the concept labeled “color” is essentially a
collection of concepts such as M(white), M(yellow), . . . and thus is a
subset on   ̃3 (K). “Color” is at level 2.

N.B.:  Such hierarchies of concepts were studied by Goguen (1974) in
the framework of category theory.

d.    Complex Fuzzy Concepts

The storage capacity of computing systems is usually not sufficient to
memorize explicitly all elements x of T, the set of terms, and their
meanings M(x). Complex concepts can then be defined by means of a
grammar or more generally by an algorithm.

α.    Generation of Terms by a Grammar   (Zadeh, 1971)

In some restricted contexts, T is a formal language that can be generated
by a formal grammar from a finite set of primitive terms. For instance, a
term set of linguistic age values can be generated by a context free
grammar from the primitive terms “young,” “old,” “very,” “not,” “and,”
“or.” Each production is associated with a calculation rule of the member-
ship function of the generated string: for example, the production A→
very B is paired with µ

A
(u) = [µ

B
(u)]2. Typical terms generated by such a

grammar are “not very young,” “not very young and not very old,”
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“young and (old or not young).” However, some of these composite terms
are intuitively hard to understand.

N.B.:  Inagaki and Fukumura (Reference from III.3) use tree grammars
(see III.3.A.f) to generate terms and their meanings.

An important example of this approach is the definition of a term set of
linguistic truth values. The set of primitive terms is then {“true,” “false,”
“very,” “not,” “and,” “or”} where “true” is a fuzzy set on [0, 1], such that
µ

true
(1) = 1 and “false” is the antonym of “true,” i.e., µ

false
(t) =

µ
true

(1 – t) with t [ [0, 1].

Remark  Zadeh (Reference from II.2, 1975) calls a linguistic variable a
complex S = (T, U, G, M) where T is a term set, G a set of syntactic rules
that generate T from a set of primitive terms, and M is a set of semantic
rules that assign to each value x of S (x [ T) its meaning M(x), which is a
fuzzy subset on the universe of discourse U. A linguistic variable takes
linguistic values that are names of fuzzy sets.

β.   A Fuzzy Algorithmic Approach   (Zadeh, 1976)

Complex concepts can be defined by means of fuzzy algorithms that
have the structure of a branching questionnaire. These algorithms are said
to be definitional (see III.3.B.e). The questions are fuzzy and are of the
form, Is u A? where A is a name of a concept and u is an element of the
universe of discourse. The answer to such a question may be fuzzy. If A is
a primitive concept, the question is said to be atomic. A branching
questionnaire is a representation in which the order of the constituent
questions that are asked is determined by the answer to the previous
questions. A branching questionnaire corresponds to a composite question
which involves a complex concept. For instance, in “Is u big?” “big”
means “long” and “wide” and “high.” The answer will be deduced from
the answers to the constituent questions, Is u long?, Is u wide?, Is u high?

More generally, a n-adique composite question Q, composed of n
constituent questions Q

1
, . . . , Q

n 
is characterized by its relational repre-

sentation B whose tableau has the form

Q
1

… Q
j

… Q
n

Q

r
1
1 … r j

1
… rn

1
r

1

: : : :

r
i
1 … r j

i
… r

i
n r

i

: : : :

r
m
1 … r

m
j … r

m
n r

m
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The universes of the constituent questions may be distinct. ;i, ;j, r
i
j is a

linguistic value, the name of a fuzzy set on U
j
 (universe of Q

j
). r

i
j is a

possible (authorized) answer to the question Q
j
, which is either attribu-

tional (e.g., How old is Terry?) or classificational (e.g., Is Terry old?). r
i
 is a

linguistic truth value (Q is classificational).
N.B.:  1.  The tableau may not be complete, that is, certain combina-

tions of the admissible answers to constituent questions may be missing
from the tableau. This may imply that either the particular combination of
answers cannot occur or the answer to Q corresponding to the missing
entries is not known.

2.  The components S
1
, . . . , S

n
 of an n-ary linguistic variable S are

said to be λ-non-interactive (Zadeh, Reference from II.2, 1975, λ means
“linguistically”) iff the assignment of specific linguistic values to S

il
,

. . . , S
ik
 (;k < n) does not constrain the assignment of linguistic values to

the linguistic variables of the complementary sequence S
jl
, . . . , S

jl
, (k + l

= n). When S
j
 takes its value in the set of possible answers for Q

j
, for any

j, the n variables S
j
 are λ-non-interactive if the tableau is complete.

λ-non-interactivity and β-non-interactivity must not be confused (see II.3.
A.b).

Several basic problems underlie the transformation of the relational
representation of a complex concept into an efficient branching question-
naire. Of these, one is that of determining the conditional redundancies
and /or restrictions that may be present in the relational representation.
Another is that of determining the order in which the constituent questions
must be asked in order to minimize the average cost of finding the answer
to Q. This problem is considered at length in Zadeh (1976).

e.   Linguistic Approximation

In the previous sections, we have been interested in the computation of
the meaning of a composite term. We now consider the converse problem.

The linguistic approximation problem, i.e., find a term whose meaning is
the same as or the closest possible to the meaning of an unlabeled fuzzy
set, was first pointed out by Zadeh (1971).

Until now very few works have dealt with this problem. In order to solve
it we may think of using a distance between fuzzy sets (see II.1.E.c), as
Wenstøp (1976a), or Kacprzyk (Reference from V) did. However, when the
term set is very large, a simple enumerative matching procedure requires
too much computation time: the determination of the distance between
two fuzzy sets involves all the elements of their discretized supports and
thus may be very long.

To cope with this difficulty, Bonissone (1978) has recently proposed a
pattern-recognition approach. The method proceeds in two main steps.
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Four features are precalculated for all the elements of the term set
(generated by a context-free grammar): the power (see II.1.D.a), a Shan-
non-like entropy (II.1.H), the first moment, and the skewness (third mo-
ment). The author has checked the weak correlation of these features. The
first step consists in evaluating the four features of the unlabeled fuzzy set
and to prescreen the term set in order to keep the closest terms in the sense
of a quadratic weighted distance in the feature space. In the second step a
Bhattacharyya (NF 1943) distance between the unlabeled fuzzy set and the
meaning of each selected term is determined. The name of the closest
labeled fuzzy set is then assigned to the unlabeled one.

f.   Representation of Natural Language

To this day the most advanced work applying fuzzy set theory to the
modeling of natural language is that of Zadeh (1977a, b), i.e., PRUF (an
acronym for possibilistic relational universal fuzzy).

PRUF is a meaning representation language for natural languages.
“Thus a proposition such as ‘Richard is tall’ translates in PRUF into a
possibility distribution of the variable Height(Richard) which associates
with each value of the variable a number in the interval [0, 1] representing
the possibility that Height(Richard) could assume the value in question.
More generally a proposition, p, translates into a procedure P, which
returns a possibility distribution, π p, with p and π p representing, respec-
tively, the meaning of P and the information conveyed by p′′ (Zadeh,
1977a).

The theory underlying PRUF is that of approximate reasoning presented
in III.1.E.

Some examples of translation into PRUF from Zadeh (1977a) are
provided. In the translation of an expression e in a natural language into
an expression E in PRUF, if w is a word in e, then its correspondent W in
E is the name of a relation in D (the data base). E is a procedure whose
form generally depends on the frame of the data base and, hence, is not
unique.

Example 1  “Kent was walking slowly toward the door” translates, in
PRUF, into:

WALKING[Name = Kent; πspeed
 = SLOW: π

time
 = PAST;

π
direction

 = TOWARD(Object = DOOR)] .

Example 2   “Most men are tall.” The frame of D comprises
POPULATION || Name| µ|
MOST || ρ | µ|
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where µ
i
, in POPULATION, is the degree to which Name i is TALL, and µ

j

in MOST is the degree to which ρ
j
 is compatible with MOST. Then “Most

men are tall” translates in PRUF into

π
Prop(TALL)

 = MOST
where

Prop(TALL) = 
µ

POPULATION Name = Namei[ ]
i

∑
POPULATION

.

The numerator is the power (II.1.D.a) of the fuzzy set of tall men in
POPULATION. |POPULATION| is the cardinality of POPULATION. π

a

always stands for “possibility distribution of the variable a.”
PRUF can be used to translate propositions (declaration, assertions) and

also questions. Very recently Zadeh (1978) outlined a possible extension of
PRUF to the translation of imperatives (orders, commands). According to
the “compliance criterion,” the (nonfuzzy) response to an imperative must
have the maximal membership value to the possibility distribution on the
responses to this imperative. This principle is closely related to maximum
meaningfulness principle (Goguen, 1976). The intended purpose of such an
extension of PRUF is the execution of fuzzy instructions in Robotics.

For example, the command, “Please ask Mary to have a cup of coffee”
is translated into

[πstrength
 = MEDIUM; Issuer = Me; Addressee = A; Proposition:

REQUEST[π
strength

 = MEDIUM; Issuer = A; Addressee = Mary;

Proposition: DRINK [Subject = Mary;

Object = COFFEE[Vessel = CUP]];

π
time

 = CONTEXTUAL]]

π
strength

 is the degree of imperativeness of the command. Note that the
above example is a nested command. A denotes the person to whom the
order is given.

Lastly, it is important to notice that a translation in PRUF is indepen-
dent of the structure of the natural language considered.

A particular kind of imperative was modeled by Shaket (1976), who
applied the maximum meaningfullness principle to the fuzzy designation of
objects in a world of blocks. This world consists in rectangular parallelepi-
pedal solid objects placed on a table. The system must understand such
commands as: “Find a cube which is near a plate” or “Find the biggest
blue plate.” “In this system adjectives define a fuzzy set over a universe
indicated in the noun. The truth value of an object in the noun group is
found by multiplying and normalizing the values in the noun fuzzy set by
those in the adjectives fuzzy set.” Superlatives are modeled by a normaliza-
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tion and a concentration. For instance, if there are two objects B1 and B2
in the world, such that µ

long
(B1) = 0.22 and µ

long
(B2) = 0.30., then

µ
longest

(B1) = (0.22 / 0.30)2 and µ
1ongest

(B2) = 1.
Note that such fuzzy instructions do not include actions because verbs

other than “find” are not considered.

C.   DEDUCTIVE VERBAL DYNAMIC SYSTEMS

Modeling natural language is crucial for the description of fuzzy sys-
tems. Recently, Wenstøp (1976a, b) proposed a verbally formulated simula-
tion model for the representation of social phenomena. In traditional
models causal relations must be precisely defined, even if the modeler has
only a vague idea of their nature. To avoid the artificial step of translating
vague ideas with inappropriate precision, the modeler should instead be
allowed to formulate his models in natural language. The main point is
that such verbal models may provide more significant information than
artificially precise ones. The aim of the approach is the inference of the
verbal model behavior from a linguistically described initial state. To make
the verbal model deductive, it is necessary to:

specify a vocabulary and a grammar;
define a semantic model of the meaning of elementary terms of the

vocabulary;
implement the syntactical-semantical model in a computer language

(Wenstøp, 1976a, b, uses APL.).

A verbal model consists in an ordered list of grammatically correct
statements such that the (fuzzy) values of all independent variables that
appear in any statement have been determined by previous statements in
the list. Loops are allowed, which, according to Wenstøp, makes the
behavior of the model hard to forecast a priori. Results are expressed in a
verbal form owing to a linguistic approximation procedure (B.e).

The validation of verbal models is discussed in Wenstøp (1976b). First,
one must be sure that the fuzzy sets used for the description of linguistic
values are acceptable by normal intuition-based standards. Secondly, two
modes of simulation exist for dynamic verbal models:

the values of the state variables, which are periodically recomputed, are
fuzzy; when they are reentered as such in the model, the output usually
gets fuzzier and fuzzier (see also III.2.F.a); this is the forecasting mode.

when the purpose is not prediction, but investigation of principal types
of behavior, the tendency toward increased fuzziness must be removed;
this can be achieved by restoring complete sharpness to the state variables
at each iteration, owing to the maximum membership rule.
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Verbal models may be useful in situations when part of the available
information is not obtained by physical measurements or not quantifiable,
especially for the description of dynamic systems where human behavior
plays a prominent role.

Wenstøp (1976a, b) applied verbal models in a case study (an organiza-
tion problem in a factory). A similar attempt can be found in Adamo
(1977).
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Chapter 3
FUZZY SETS IN
DECISION-MAKING

Fuzzy decision-making is still in its early age; thus the reader must not
expect to find here a new general theory. To date most of the works in this
field either propose a philosophical background where already existing
theories are reinterpreted or extend some specific problems to deal with
fuzzy preference relations, fuzzy objective functions, fuzzy weightings,
fuzzy votes, fuzzy utilities, fuzzy events, etc.

Section A is devoted to rank-ordering the elements of a set equipped
with a given fuzzy binary preference relation. Fuzzy aggregation of criteria
and aggregation of fuzzy criteria are considered in Section B. Section C is
concerned with fuzzy group decision-making, and Section D with decision-
making under fuzzy events and with fuzzy utilities.

A discussion of classical approaches in decision-making can be found in
Luce and Raiffa (NF 1957).

A.    FUZZY  RANK-ORDERING

Let X be a finite set of possible objects (or actions) one of which must be
chosen. It is difficult to define directly a linear preference ordering of the
objects. Pairwise comparisons are more natural. Several ad hoc ranking
methods are now surveyed. All of them deal with fuzzy relations.

i) Shimura (1973) has proposed an approach to the rank-ordering of
objects from knowledge of numerical grades assigned to every object out

277
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of every pair in X. f
y
(x) denotes the (positive) “attractiveness” grade of x

when the choice is limited to an element of {x, y}. These primitive
evaluations can be reduced to relative preference grades m(x, y) defined by
(Shimura, 1973)

∀ x, y ∈X, µ x, y( ) =
f y (x)

max( f y (x), f x (y))
= min 1,

f y (x)

f x (y)






.

m(x, y) = 1 as soon as x is at least as attractive as y. m(x, x) = 1. More
generally, if T = {y

1
, . . . ,y

m
) # X, the relative preference grade of x over

the elements of T is taken as

µ (x, T ) = min
i = 1, m

µ (x, yi ).

Intuitively, the most attractive element is x̂ such that m(x̂, X) =
max

x[X
 m(x, X). However, when max

x[X
 m(x, X) ≠ 1, this result can be

questioned. A sufficient condition for the existence of x̂ such that m(x̂, X)
= 1 is (Shimura, 1973)

; x, y, z [ X,  if  f
y
(x) > f

x
(y)  and   f

z
(y) > f

y
(z),

then  f
z
(x) > f

x
(z).          (1)

When this condition holds, the most attractive object in X – { x̂} can be
found in the same way. Repeated applications of this procedure yield a
complete ranking of the objects.

N.B.:  The case when a template (or standard) object exists was also
considered by Shimura (1973).

Another sufficient condition for the existence of a most attractive object
x̂ in X is (Shimura, 1973)

∀ x, y, z ∈X,
f z (x)
f x (z)

=
f y (x)

f x (y)
 

f z (y)
f y (z)

.          (2)

This condition is more restrictive than (1).

ii) Saaty (1978) applied his method of determination of membership
functions (see 1.B.e) to rank-ordering of objects. He assumes knowledge of
the m′(x, y) satisfying an “antisymmetry” property:

m′(x, y) ⋅ m′(y, x) = 1.

m′(x, y) > 1 means x is preferred to y. Moreover, m′(x, x) = 1. m′ is said to
be consistent iff ;x, y, z[ X, m′(x, z) = m′(x, y)m′(y, z), which is similar to
condition (2).

The objects are ranked according to weights W(x), for all x in X, such
that ;x, y [ X, m′(x, y) = W(x) / W(y). The existence of the W(x) is
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guaranteed as soon as m′ is consistent. They are derived through a linear
algebra method described in 1.B.e.

iii) When m is obtained in the form of a fuzzy preorder relation, a
ranking of classes of noncomparable objects is always possible using the
results of II.3.D.e, due to Orlovsky (1978).

iv) Some hints for an alternative approach are now given. Assume m is
the membership function of a fuzzy relation and

m(x, y) > 0.5     means    x is preferred to y,

m(x, y) = 0.5     means    x and y have the same attractiveness.

Of course, when m(x, y) > 0.5, then m(y, x) < 0.5; and when m(x, y) = 0.5,
then m(y, x) = 0.5. Moreover, m(x, x) = 0.5 for all x in X. An example of
such a preference relation is a tournament relation that satisfies the
equality

;x, y [ X,   m(x, y) + m(y, x) = 1.

Consider, for any object x, the fuzzy class dominated by x:

P
<
(x) = µ (x, y)

y ∈X
∑ / y,

i.e., the fuzzy set of objects to which x is preferred (see II.3.D.b). P
<
(x)

expresses the global attractiveness of x in X. Using the transitive weak
inclusion (II.1.E.c.α) denoted B, we state that the absolute attractiveness
of the object x is greater than the attractiveness of y whenever P

<
(y)

B P
<
(x) is true and P

<
(x)B P

<
(y) is false. A consistency condition for m

is:;x, y [ X, P
<
(x)BP

<
(y) and P

<
(y)BP

<
(x) are not false at the

same time. For assume this consistency condition does not hold for given x
and y. Then:

(P
<
(x) B P

<
(y) is false) is equivalent to ('z [ X, m(x, z) >

 
1
2

and
m(y, z) < 1

2
);

(P
<
 (y) B P

<
 (x) is false) is equivalent to ('t [ X, m(y, t) > 1

2
 and m(x, t)

< 1
2
).

These assertions mean: x is preferred to z; z is at least as attractive as y; y
is preferred to t; and t is at least as attractive as x. Using transitivity, we
conclude that x is preferred to x, which is “inconsistent.”   Q.E.D.

The fuzzy dominated classes of a consistent m form a (nonfuzzy) par-
tially ordered set under B, and thus a ranking of disjoint subsets of
noncomparable objects is possible.

N.B.:  A consistency index for fuzzy preference relations is described
and discussed in Blin et al, (1973).
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The presented approaches above may appear fragmentary in the sense
that they have not yet been discussed in the framework of a general theory.
Moreover, these methods are fuzzy only because they allow handling
noncrisp preferences. At a further stage, one may think of dealing with
linguistic preferences (i.e., m(x, y) is a fuzzy number on [0, 1].)

B.   MULTICRITERIA DECISION-MAKING

Suppose now each object (or action) in X is assigned several numerical
(or linguistic) evaluations. These evaluations refer either to local features
of each object or to different global aspects (criteria) of the objects. These
two pure situations may occur at the same time in real problems. In the
first the partial evaluations refer to the same aspect. The problem of
measuring the degree to which an object has the empirical property of its
parts has been especially considered by Allen (1974). The semantics of the
aggregation operators look similar in the two situations, but these opera-
tors will be discussed in the terminology of the second situation, i.e.,
criteria aggregation, for convenience. We study separately the cases when
the evaluations are numerical (i.e., nonfuzzy) and linguistic (i.e., fuzzy).

a.   Aggregation of Ordinary Criteria In the Framework of Fuzzy Set
Theory

Let X be a set of n objects (or actions) x
j
, j = 1, n, and g

1
, . . . ,g

m
 be m

objective functions from X to R to be maximized. The set of “good”
objects with respect to aspect i is the maximizing set G

i
 of g

i
 (see II.4.B.a).

When the objectives are of equal importance, the fuzzy set D of optimal
objects with respect to the m criteria may be defined as the intersection of
all the maximizing sets G

i
, i.e., D = >

i = 1, m
G

i
 (Bellman and Zadeh, 1970).

This aggregation is “pessimistic” in the sense that each object is assigned
its worst evaluation. The corresponding “optimistic” aggregation is defined
by D = <

i = 1, m
G

i
 where each object is assigned its best evaluation. When

the objectives are of unequal importance, let r
i
> 0, i = 1, m, be m coeffi-

cients expressing the relative importance of each criterion; Yager (1977,
1978) has proposed the aggregation D = >

i = 1, m
G

i
ri (see also III.2.F.c).

“The membership grade in all objectives having little importance (r
i
< 1)

becomes larger, and while those in objectives having more importance
(r

i
> 1) become smaller. This has the effect of making the membership

function of the decision subset D[ • • •] being more determined by the
important objectives.”

The above aggregation scheme assumes that the criteria cannot compen-
sate each other. When this is no longer true, other schemes may be
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considered: product, arithmetic mean, geometric mean. Note that the last
two are no longer associative. When these aggregations are weighted, we
have for instance

µD = µGi[ ]ri

i = 1

m

∏         or       µD = wi µGi
i 1

m

∑
with i = 1

m∑ wi = 1.

If the aggregation has to be insensitive to irregularities of the evalua-
tions, we may think of using a “weighted median” such as Sugeno’s
integral (see II.5.A.b.α):

µD(xj ) = max
k = 1,m

min(µGik
(xj ), f (Mik

))

where m
Gi1

 (x
j
) < ⋅ ⋅ ⋅ < m

Gik
 (x

j
) < ⋅ ⋅ ⋅ < m

Gim
 (x

j
), M

ik
 = { i

k
, . . . , i

m
} , and f

is a fuzzy measure on the set of criteria; f(M
ik

) expresses the grade of
importance of the subset of criteria M

ik
.

Lastly, Kaufmann (1975) has used a distance d between fuzzy sets (see
II.1.E.c.β) to define D: more specifically, D minimizes the functional

i = 1
m∑ wid(D, G

i
) where the w

i
 are weights.

N.B.:  The weights may depend on the objects (or actions) considered.

Remark   Roy (1975, 1976), has given a typology of criteria based on the
existence or nonexistence of indifference or presumption of preference
thresholds on the evaluations of objects. This typology can be interpreted
in the framework of fuzzy set theory.

b.    Fuzzy Aggregation and Fuzzy-Valued Criteria

α.    Rating

Weights are usually subjectively assessed, sometimes linguistically. The
w

i
(x

j
) then take their values on a term set of linguistic values such as “very

important,” “more or less important,” “not really important,” etc. mod-

eled by fuzzy numbers w
i (xj

) on [0, 1] (or possibly R+). Moreover, in some
situations the evaluation of the criteria are also fuzzy, i.e., m

Gi
(x

j
) is a fuzzy

number m
Gi

(xj
) on [0, 1]. The linear aggregation scheme becomes

m
D (xj

) = [w
1 (xj

)(m
G1

(xj
)] % · · · % [w

m (xj
)(m

Gm
(xj

)].

Usually, in this formula the possible nonfuzzy values of the variables

w
i
(x

j
), fuzzily restricted by the w

i (xj
), are linked by the β-interactivity

constraint i = 1
m∑ wi xj( ) = 1 (see II.3.A.b). In the above formula the notation

is then somewhat misused: because of the interactivity, % and ( are not
exactly an extended sum and an extended product. The situation is similar
to that of II.5.D.a.
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Baas and Kwakernaak (1977) directly extended to fuzzy numbers the
formula

µD(xj ) = wi (xj )µGi
i = 1

m

∑ (xj ) wi (xj )
i = 1

m

∑
But, since the 2m-ary operation

f (a1, . . . , am ,b1, . . . , bm ) = aibi

i = 1

m

∑ ai

i = 1

m

∑
is neither increasing nor decreasing nor hybrid, the calculation of m

D
(x

j
)

may be tricky (except for its 1-cut and its support, or when m = 2).
However, in the first aggregation formula, it may seem natural to assume
the β-interactivity constraint only holds for mean values of ~ w̃

i
(x

j
)’s.

When the weights do not depend on the objects considered, it is not

important to normalize them, and the calculation of m
D (xj

) becomes easy
because of the noninteractivity. However, strictly speaking, D is no longer

a type 2 fuzzy set since the support of m
D (xj

) is not generally included in
[0, 1]. Fuzzy linear aggregation was also investigated in this case by Jain
(1977).

Other fuzzy aggregation schemes are, for instance,

m
D (xj

) = mini = 1,m
 m

Gi
(xj), i.e., D = C

i = 1,m
G

i  
(see II.2.C.b);

m
D (xj

) = mini = 1,m
[m

Gi
(xj)]

~ri; in this formula the fuzzy number m
Gi

(xj) is
elevated to a fuzzy power ~r

i
 (assumed to be a positive fuzzy number).

These two formulas generalize those of Bellman and Zadeh and of
Yager.

β.    Ranking

When the m
D
(x

j
) have been calculated by some aggregation method, it

remains to rank the objects or actions x
j
. The ranking of fuzzily rated

objects is not obvious since no linear order exists among fuzzy numbers.

Jain (1977) has given a ranking procedure consisting of five steps:

 (i) find the support S of <
j
 m

D (xj
), S , R+;

(ii) define the maximizing set M of S through the membership
function m

M
(s) = [s/(sup S)]p where p is a parameter;

(iii) determine M
j
 = [m

D
(x

j
)] > M, j = 1, n;

(iv) assign to each object x
j
 the membership value hgt(M

j
);

(v) rank the x
j
, according to hgt(M

j
).
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Baas and Kwakernaak (1977) used a preferability index m
I
, whose value

is, for the object x
j
,

µ I x j( )  =      
t1, . . . , tk , . . . , tn

sup   
k = 1, n
min   µdk

tk( )
(3)

  
subject  to    t j  >  tk ,     k =  1,  n,

where m
dk

 is the membership function of the fuzzy number m
D (xk

). It
generalizes formula (27) in II.2.B.g to n fuzzy numbers. The membership
function m

I
 gives only partial information on the preferability of the best

action (there may be several x
j
 such that m

I
(x

j
) = 1). A fuzzy preferability

value of the object x
j
 over the others is (Baas and Kwakernaak, 1977)

 P
j
 = m

D (xj
)

* (m– 1)–1 [m
D (x1

) % ⋅ ⋅ ⋅ m
D (xj – 1

) % m
D (xj + 1

) % ⋅ ⋅ ⋅ %m
D (xn

)]

(3) could be generalized using a fuzzy relation R that models for
instance “much greater than” . . . . For any n, (3) becomes

µ I (xj ) = sup
t1, . . . , tn

min
k = 1,n

k ≠ j

(µdj
(t j ), µdk

(tk ), µR(t j , tk ))

An alternative approach was recently suggested by Watson et al. (1979).
Assume m= 2 for convenience. The ranking problem is viewed as one of
implication: To what extent do the fuzzy ratings imply that object x

1
 is

better than object x
2
 or conversely? This is formally translated by X → Y

where X and Y are binary fuzzy relations on R such that

µ X (t1, t2 ) = min(µd1
(t1),µd 2

(t2 )),

µY (t1, t2 ) =
1 if t1 > t2 ,

0 otherwise.




(A less rigid Y is possible.) The preference value of x
1
 over x

2
 is then

µ ′I (x1) = inf
t1, t2

max(1− µ X (t1, t2 ), µY (t1, t2 )).          (4)

Note that the implication which is used is that introduced in III.1.B.b.α.
m

I′(x1
) corresponds to the less valid implication. m

I ′(x2
) is also calculated

using

µY (t1, t2 ) =
1 if t2 > t1,

0 otherwise.




The best object x
j 
corresponds to the greatest m

I′(xj
).
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Note that formula (4) can also be written

µ ′I (x1) = 1− sup
t1, t2

min(µd1
(t1), µd2 (t2 ), µ

Y
(t1, t2 ))

= 1− µ I (x2 ), using formula (3).

However, for n > 2

µ ′I (xj ) = inf
t1, . . . , tn

max 1− min
i = 1, n

µdi
(ti ), min

k = 1, n
k ≠ j

µY (t j , tk )










                 = 1− sup
t1, . . . , tn

min min
i = 1, n

µdi
(ti ), max

k = 1, n
k ≠ j

µ
Y
(t j , tk )











It is easy to see that 1 –m
I ′(xj

) can be defined by formula (3) where the
supremum is now taken subject to the constraint t

j
 < t

k
 for at least one

k ≠ j.
When Y = R is a fuzzy relation, even for n = 2 the two approaches do

not coincide any longer.
Another possibility for ranking fuzzy-rated alternatives is to calculate

max j = 1, n
µ

D
(x

j
), i.e., looking for the fuzzy extremum of the fuzzifying

function µ
D 

from X to [0, 1] on its domain X (see II.4.B.c.). An interesting

index for the ranking is m
I′′(xj

) = hgt[ m
D (xj

) > maxk =1, n
 m

D (xk
)].

Whatever method is chosen, the ranking can be questioned whenever a

significant overlap between some m
D (xj

) exists. If this is the case, we may
wish to define more precise partial evaluations and / or weights, when
possible. Otherwise, the choice of an object will remain arbitrary. The
main advantage of this approach is its making possible detection of such
an indeterminacy.

N.B.:  Fuzzy aggregation (using fuzzy weights) is obviously also worth
considering for nonfuzzy-valued criteria.

c.    Fuzzy Pareto-Optimal Set   (Zadeh, 1976)

The numerical aggregation of objective functions is not the only possible
approach in multicriteria decision-making. Another is to define a preorder-
ing in the set X of objects as follows: x

j
 is preferred to x

k
 iff

∀ i = 1,  m,  µGi
(xj ) > µGi

(xk ).

(The m
Gi

(xj) are here assumed to be nonfuzzy.) To each object x
j
 can be

associated the set D(x
j
) of objects that dominate it, i.e., D(x

j
) = {x

k
,x

k
 is

preferred to x
j
}. Let C be the subset of objects that satisfy a prescribed

constraint. Then x
j
 [ C is said to be undominated iff C > D(x

j
) = {x

j
}. The
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set of undominated objects in C contains the optimal solution, in the sense
of Pareto, of the multiobjective decision problem. Zadeh (1976) has pro-
posed a linguistic approach to this problem in order to reduce the size of
the Pareto-optimal set by making use of fuzzy information regarding the
trade-offs between objectives. These trade-offs are usually expressed in
linguistic terms via fuzzy preference relations. Let r be the degree to which
x

j
 is preferred to x

k
. Then a partial linguistic characterization of r may be

expressed, for m = 2, as (Zadeh 1976), “If (m
G1

(x
j
) is much larger than

m
G1

(x
k
) and m

G2
(x

j
) is approximately equal to m

G2
(x

k
)) or (m

G1
(x

j
) is approxi-

mately equal to m
G1

(x
k
) and m

G2
(x

j
) is much larger than m

G2
(x

k
)), then r is

strong.” Here “much larger” and “approximately equal” are linguistic
names of fuzzy binary relations in [0, 1]2 and “strong” is a linguistic value
of r. Such linguistic rules determine, once the evaluations of the objects are
known, a type 2 fuzzy preference relation on X × X, which may be used to
define a fuzzy Pareto-optimal set, as suggested by Zadeh (1976).

C.    AGGREGATION OF OPINIONS IN A SOCIAL GROUP.   CONSENSUS

A very general class of decision-making problems is concerned with
decisions made by a group. There are two main reasons why group
decision models are attractive: first, they are easy to comment on and
debate because of our intuition concerning social phenomena; secondly,
according to Fung and Fu (1975), they are “means of reducing excessive
subjectiveness due to idiosyncrasy of a single individual.” We deal succes-
sively with the question of how best to aggregate individual choices into
social preferences and with the formation of consensus.

a.    Aggregation of Opinions in a Social Group

An axiomatic approach to rational group decision-making under uncer-
tainty was presented by Fung and Fu (1975). Let X be a set of concurrent
actions and m the number of individuals involved in the decision-making
process. The preference pattern of every individual i is represented by an
L-fuzzy set A

i
 on X. (An individual can formally be viewed as a criterion.)

m
Ai
(x

j
) denotes the degree of preference of action x

j
 by individual i. The

authors give a set of axioms that a rational decision must satisfy:

(i) L is an order topology induced by a linear order < and is a
connected topological space. The intervals in L are of the form
]a,b] = { x [ L, a < x < b}  where < denotes “< but not =.” L
is said to be connected if L is not the union of two open disjoint
nonempty sets in L. For instance, L cannot be a topological
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space on a discrete set, but L = [0, 1] satisfies axiom i; however, L
is not necessarily a bounded set. “The idea of using a topological
structure instead of a numerical scale to describe psychological
and social phenomena is not new (e.g., Lewin, NF 1936).
. . . A feature of this approach is a generalization of fuzzy sets
and decision theory to include the situation where the scale of
memberships or risk functions is not necessarily established nor is
a metric defined” (Fung and Fu 1975).
An aggregation ∗ is a binary operation on L; and an aggregate
of two fuzzy sets A

1
, A

2
 is represented by A

1 * A
2
. The remaining

axioms give the properties of a rational aggregation.
(ii) (law of independent components) There exists an operation *

on L such that A
1 * A

2
= #

X
m A

1
(x)* m A

2
(x) / x, for all fuzzy sets

A
1
, A

2
 on X, and *  is continuous in the sense of the topology of

L.
(iii) (idempotency law) ;A

i
[ 3

L
(X), A

i * A
i
= A

i
. This axiom as-

serts that if two individuals assign the same preference grade to
an action, this grade is preserved in the aggregation of both
opinions.

(iv) (commutativity) ;A
i
, A

j
 [ 3

L
(X), A

i * A
j
 = A

j * A
i
. This ax-

iom states that the aggregation must be symmetric.
(v) For m > 3, A

1 * A
2 * · · · * A

m
 is inductively defined by

(A
1 * A

2 *  · · · A
m –1

) * A
m
.

(vi) (associativity);A
i
, A

j
, A

k
[ 3

L
(X), A

i * (A
j * A

k
) = (A

i * A
j
) * A

k
.

“Although axioms (v) and (vi) are obviously acceptable in a set theoretic
approach, their role in group-decision theory can be disputed” (Fung and
Fu, 1975).

(vii) (nondecreas ingness o f* ) ; x [ X, ; B, C
l
, C

2
[ 3

L
(X) w i th

A
1

= B * C
1
 and A

2
= B * C

2
 if m

C1
(x) > m

C2
(x), then m

A1
(x) >

m
A2

(x). If an individual increases his preference grade of an
action x, then the global preference grade of x in the aggregation
cannot decrease.

The main result in Fung and Fu (1975), is the theorem: Let L and *
satisfy axioms (i) – (vii); then the only possible choices of *  are

(pessimistic aggregation) ;a, b [ L, a *  b = min(a, b);
(optimistic aggregation) ;a, b [ L, a *  b = max(a, b);
(mixed aggregation) 'α [ L such that

;a < α,      ;b < α,   a p b = max(a, b),

;a < α,      ;b > α,   a p b = α,

;a > α,      ;b > α,   a p b = min(a, b).
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Lastly, Fung and Fu (1975) proved that the only possible rational aggrega-
tion is the pessimistic (resp. optimistic) one when axiom (vii) is replaced by
axiom (viii) (resp. (ix)):

(viii) There exists α in L and a lower limit 0 of L, such that, if
 0 < x < α, then 0 p x = 0.

(ix) There exists β in L and an upper limit 1 of L, such that, if
β < x < 1, then 1 p x = 1.

Axioms (i)–(vi) plus (viii) justify the minimax principle: the best action is
x ∗ such that

µ(x*) = sup
x ∈X

min
i = 1,m

µ Ai
(x).

These axioms provide a theoretical basis for some of the aggregation
schemes described in Section B.a. However, to account for aggregation
schemes of fuzzy-valued criteria (or preferences), some weaker structure
seems to be needed for L, for instance, a topology induced in a partially
ordered set (see Morita and Iida, 1975).

When the m
Ai
(x) are fuzzy numbers m

A  i
(x), a linear aggregation was

proposed by Nahmias (Reference from II.2). Suppose w
1
, . . . , w

m
 are

nonnegative weights, such that i = 1
m wi = 1∑ , which reflect the relative

importance of the opinion of each individual in the group decision.

Nahmias claimed that the fuzzy grade w
1

m
A1

(x) % · · · % w
m
m

Am(x) was a
more reasonable description of the opinions of the group than a similar
convex sum of random variables. This is because when the m individuals

share the same opinion with regard to x, that is, m
Ai

(x) = a~ ;i = 1, m, then
the convex sum gives a~ only when a~ is a fuzzy number and not a random
variable.

The aggregation of relative preferences in a group using fuzzy sets was
considered by Blin and Whinston (1973) and Blin (1974). The opinions of
the m individuals are assumed to be m linear orders over X. A social
preference relation R is here a fuzzy relation obtained by aggregation of
the individuals’ preferences. Denoting by N

ij
 the number of individuals

who prefer x
i
 to x

j
, then possible definitions of R are

µR(xi , xj ) = Nij m

or

µR(xi , xj ) = max(0, Nij − Nji ) m.

Blin and Whinston noticed that the 1-cut of R, defined as above, is a
nonfuzzy partial ordering. They obtained nonfuzzy linear orderings for R
defined as a linear extension L of the 1-cut of R in the sense of Spilrajn’s
theorem (see II.3.D.c). Since several linear extensions may exist, the
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authors chose L* maximizing

(i, j) ∈ I(Λ)
∑  m

R
(x

i
, x

j
) where I(L) = {( i, j), (x

i
, x

j
) [ L and m

R
(x

j
, x

j
) < 1};

so in L* the relative ranking of elements in a pair of initially non-
comparable ones reflects the strength of preferences in the original fuzzy
relation. An algorithm for computation of L* can be found in Blin (1974).

b. Consensus

Ragade (1976, 1977) has modeled consensus formation in a group as a
dynamical process by means of fuzzy automata. The description of how a
consensus is reached aims at understanding the way decisions are made in
a group. Fuzzy automata were already suggested as an interesting model
for an individual’s formulation of voting strategies in social choice theory
by Hatten et al. (1975).

In a group each individual i  is assumed to have a fuzzy profile of
opinions A

i
(t) with regard to the n actions x

j
 at time t. Individual i

perceives the opinion of j as

F
ij
(t) = T

ij
 p A

j
(t)

where T
ij
 is the transformation matrix expressing that i does not perceive

accurately j’s opinions: p is one of the four compositions:

µΦij (t)
(xk ) = 1

n
tij

kl µ Aj (t)
(xl )

l = 1

n

∑
or

µΦij (t)
(xk ) = max

l
tij

kl µ Aj (t)
(xl )

or

µΦij (t)
(xk ) = max

l
tij

kl min
r

µ Aj (t)
(xr )( )

or

µΦij (t)
(xk ) = 1

n
tij

kl min
r

µ Aj (t)
(xr )( ).

l = 1

n

∑
The opinions of i, modified by the perceived opinions of other individuals,
become at t + 1

Ai (t + 1) = Ai (t) ⊥
j

Φij (t)

where ' denotes for instance:
a max-min consensus: A

i
(t + 1) = A

i
(t) < (>

j ≠ i
Φ

ij
(t)); individual i

“chooses to transform A
i
(t) by accepting any agreed improvement in the

Φ
ij
(t)”;
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a min–max consensus: A
i
(t + 1) = A

i
(t) > (<

j≠i
F

ij
(t)); here individual

i “chooses to transform A
i
(t) by rejecting any improvement in the F

ij
(t).”

Four other profile modification rules are given by Ragade (1977). A
consensus is reached as soon as A

j
(t) = A

i
(t + 1), ;i.

N.B.: Another model of how people perceive each other’s behavior has
been proposed by Vaina (Reference from V, 1978).

Let R denote the group-preference fuzzy relation when the consensus is
reached, constructed for example according to Blin and Whinston. R is a
reciprocal fuzzy relation, i.e.,

;x
j
, x

k
,   m

R
(x

j
, x

k
) + m

R
(x

k
, x

j
) = 1,   j ≠ k ,

;x
j
,     m

R
(x

j
, x

j
) = 0, by convention.

m
R
(x

j
, x

k
) = 1 means x

j
 is totally preferred to x

k
; m

R
(x

j
, x

k
) = 0.5 means x

j

and x
k
 have equal preferences. Bezdek et al. (1977) have proposed scalar

measures of consensus:

F(R) =
2 tr(R2 )
n(n − 1)

     (average fuzziness),

C R( ) =
2 tr RRt( )
n n−1( )     (certainty).

F(R) is supposed to express the average confusion exhibited by R and
C(R), the average “assertiveness.” The following properties hold: F(R) +

C(R) = 1; F(R) [ [0, 1
2 ]; C(R) [ [ 1

2 , 1]; F(R) =  1
2  iff C(R) = 1

2 iff m
R
(x

j
,

x
k
) = 1 /2 , ; j , ;k , j ≠ k; F (R) = 0 i f f C( R) = 1 i f f m

R
(x

j
, x

k
) [ {0 , 1 }

;j, k. (See Bezdek et al. (1977).) Other properties and discussions can be
found in Bezdek et al. (1977).

D.   DECISION-MAKING UNDER RANDOMNESS AND FUZZINESS

In this last section we survey some applications of fuzzy sets to more
complex decision-making problems in which the choice of actions may
depend not only on utility values but also on the states of nature or on
possible or expected consequences of actions. States of nature, feasible
actions, admissible consequences, utility values, available information, etc.
may be fuzzy in practical situations. Fuzziness may also be introduced in
statistical decision models where only probabilities of occurrence of events
are known. Several more or less different attempts of this kind can be
found in the literature. This field is still at an early stage of development.
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a.   Choice of an Action According to the State of Nature

Let S be a set of q possible nonfuzzy states of nature s
k
· s

k
 is assumed

uncontrollable and describes the situation or environment in which a
decision must be made. X = {x

1
, . . . , x

n
} is the set of actions that can be

performed. Let u
jk
 be the nonfuzzy utility of performing x

j
 when the state

of nature is s
k
. When the state of nature is s

k0
, the best action is x

j0
 such

that

uj0k0
=  max

j
ujk0

.

S is assumed finite here for convenience.

α.   Fuzzy State  (Jain, 1976)

A state of nature is fuzzy as soon as it is linguistically described or
roughly preceived or approximately measured because of the complexity of
the situation. The extension principle allows us to induce for each action x

j

a fuzzy utility Uj that reflects the lack of well-defined knowledge of the
state:

Ũj = µ s̃ (sk ) ujk

k = 1

q

∑
where s| is the fuzzy state, a fuzzy set on S. The fuzzy utilities U

|

j
 can be

ranked according to the methods described in B.b.β.

β.   Fuzzy State. Fuzzy Utilities

Let u|
jk
 be the fuzzy utility of performing x

j
 in the nonfuzzy state s

k
.

When only utilities are fuzzy, the problem is to rank those that correspond
to the state of nature s

k0
, using methods of B.b.β. When both utilities and

the state of nature are fuzzy, the extension principle allows assigning the
membership value m

s̃
(s

k
) to each fuzzy utility value u|

jk
. The utility of action

x
j
 is now a level 2 fuzzy set (see II.2.C.a):

˜̃Uj = µ s̃
k = 1

q

∑ (sk ) ũ jk .

The problem of ranking level 2 fuzzy sets of R is still unsolved. A possible
method for reducing to an ordinary fuzzy set is to consider u|

jk
 as

deriving from a fuzzification kernel (see II.2.C.a). The reduced fuzzy utility
U|

j
 will be

  

Ũj = µ s̃
k = 1

q

U (sk ) ũjk ,

whose membership function is m
U
|

j
(z) = max

k
 m

s|
(s

k
)m

u|jk
(z) ;z.

The reduced fuzzy utility U
|

j
 can be ranked as in B.b.β. Another

reduction method can be found in Jain (1976).



291IV.3.  Fuzzy Sets in Decision-Making

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

g.   Probabilistic State. Fuzzy Utilities

Assume that the state of nature is known only in probability, i.e., there is
a probability distribution p over S such that k  = 1

q∑ p(s
k
) = 1. The decision

problem when the utilities are nonfuzzy is classically solved by assigning to
each action the nonfuzzy expected utility

Uj = p
k = 1

q

∑ sk( )ujk ;

and the expected best action is x
j0
 such that

Uj0
= max

j
Uj .

When the utilities u
jk
 are fuzzy numbers ̃ujk , the same formula holds

provided that we use an extended addition. The Ũj  are now defined by

Ũj = p s1( ) ũj1 % · · · % p sq( ) ũjq .

When the u|
jk
 are L-R type fuzzy numbers (see II.2.B.e), the U

|

j
 are very

easy to calculate and are ranked as in B.b.β. This situation was also
studied by Jain (1978), who extended his approach to multicriteria (utili-
ties) with fuzzy weights.

Sometimes, the probability of each state s
k
 is known only linguistically,

i.e., p( s
k
) (e.g., “very likely,” “rather unprobable,” etc.). This problem is

considered by Watson et al. (1979). The membership function of U
|

j
 is

given by

µ
Ũ j

(z) = sup
k = 1 pk υk =z
q∑

min
k

µ p̃(sk ) ( pk ), µ
Ũ jk

(υk )





subject to k = 1
q pk∑ = 1.  The calculation of U

|

j
 is not so easy as in the

preceding case (for q > 2) because the linguistic probabilities are β-
interactive (see II.5.D.a).

b.   Statistical Decision-Making under Fuzzy Events

The main references of this section are Tanaka et al. (1976), Okuda et al.
(1974, 1978), and Tanaka and Sommer (1977), who dealt with high-level
decision-making. According to these authors, “much of the decision-
making at the higher level might take place in a fuzzy environment, so that
it is only necessary to decide roughly what action, what states, what
parameters should be considered.” Their formulation uses Zadeh’s ap-
proach of probabilities of fuzzy events (see II.5.C.a).

Let us recall some definitions. Let S and S′ be sets of states, S
= {s

l
 , . . . , s

q
}, S′ = {s′

1
, . . . , s′

r
} with probabilities p(s

k
) and p′(s′

l
), re-
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spectively. The probability of the fuzzy event A in S is

P(A) = µ A(sq )
k = 1

q

∑ p(sq ).

Let ρ(s
k
, s′

l
) denote the joint probability of s

k
 and s′

l
; then the joint

probability of the fuzzy events A in S and B in S′ is

P(A, B) = µ A(sq )
l = 1

r

∑
k = 1

q

∑ µB( ′sl )ρ(sq , ′sl ).

The conditional probabilities P(A \ s′
l
) and P(A \ B) are defined by

P(A \ s′
l
) = P(A, s′

l
) / p(s′

l
),         P(A \ B) = P(A, B) / P′(B).

A decision problem with fuzzy events and fuzzy actions in the sense of
Tanaka et al. (1976), is a 4-tuple (S, -, p, u) where S = { s̃1 , . . . , s̃r } is a
set of fuzzy states that are fuzzy events on S = {s

1
, . . . , s

q
}  equipped with

the probability distribution p; - = {x
1
, . . . , x

n
} is the set of fuzzy ac-

tions; u(· , ·) is the utility function from - × S to R. S is assumed to be
orthogonal, i.e.,

µ s̃l
(sk )

l = 1

r

∑ = 1,          ;k = 1, q

(so that  l = 1
r P∑ (s̃l ) = 1).

The expected utility of a fuzzy action x|
j
 is

U( x̃ j ) = u
l = 1

r

∑ ( x̃ j , s̃l ) P(s̃l ).

An optimal decision is a fuzzy action x̃0  that maximizes U(x|
j
). In the

following the fuzzy state is assumed to be known through a message m
i

belonging to M = {m
1
, . . . , m

t
}, the set of possible messages. It is also

supposed that a conditional probability f (m
i
| s

k
) of receiving m

i
, in state s

k
,

is known a priori. Using Bayes’s formula to calculate the posterior proba-
bility f (s

k
| m

j
) from f (m

i
 | s

k
) and p(s

k
), the expected utility U (x|

j
| m

i
) of the

action x|
j
 when message m

i
 is received is

U( x̃ j | mi ) = u
l = 1

r

∑ ( x̃ j , s̃l ) P(s̃l | mi ).

The optimal decision x|(m
i
) is the one that maximizes U(x|

j
| m

i
). The

probabilistic information e is obtained through observation of the random
message m whose probability distribution is f such that

f (mi ) = p
k = 1

q

∑ (sk ) f (mi | sk ).
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The expected utility of receiving the information e is

U( x̃(m)|m) = U( x̃(mi )|mi )
i = 1

t

∑ f (mi ).

The worth of the information e is defined by

V(e) = U(x|(m) | m) – U(x|
0
).

When a message is characterisitic of a state (i.e., f (m
i

| s
k
) = 0 for i ≠ k;

f(m
k

| s
k
) = 1; t = q), the information is called probabilistic perfect infor-

mation and denoted by e∞.
Next, we consider fuzzy messages m|

l
, . . . , m|

h
 that are fuzzy sets on M

and satisfy the orthogonality condition

µ m̃d
d = 1

h

∑ (mi ) = 1 ∀ i = 1, t.

Similarly, the expected utility of x|
j
 given m|

d
 is

U( x̃ j |m̃d ) = u
l = 1

r

∑ ( x̃ j , s̃l ) P(s̃l |m̃d ),

and the optimal decision x|(m|
d
) maximizes U(x|

j
| m|

d
). The corresponding

fuzzy information E has expected utility

U( x̃(m̃)|m̃) = U( x̃(m̃d )|m̃d ) P(m̃d )
d = 1

h

∑
where m| is a random fuzzy message. The worth of the fuzzy information E
is V(E) = U ( x̃ (m|) | m|) – U(x|

0
). When a fuzzy message is characteristic of

a fuzzy state (particularly, r = h), the corresponding information is called
fuzzy perfect information and denoted E∞. The following inequalities are
proved in Tanaka et al. (1976):

V(E∞ ) > V (e∞ ) > V(e) > V(E).

These inequalities are consistent with intuition: V(e) > V(E) is due to the
fact the information E has fuzziness in addition to randomness. V(e∞ )
> V(e) holds because e∞ is better information than e; “V (E∞ ) > V(e∞ ) is
caused by the fact that our interest is not in S but in S.” (Tanaka et al.
(1976)). The probabilistic entropies of S in the presence of fuzzy or
nonfuzzy messages are also calculated by these authors.

N.B.: 1. Tanaka and Sommer (1977) proved that the probability of
state S

k
 when two identical fuzzy messages m|

d
 are simultaneously received

is p(s
k
| ~m

d
, ~m

d
) = p(s

k
| very ~m

d
), provided that f (m

i
| s

k
) = 0 for i ≠ k,

f(m
k

| s
k
) = 1 and t = q. Very ~m

d
 is nothing but (~m

d
)2. (See II.1.B.f.).

2.   Fuzzy utilities would be worth considering in this framework.
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c.    Fuzzy Decision Analysis

In this section decisions are made according to an analysis of their
consequences.

α.    Opportunity Cost Calculation    (Hägg, 1978)

Hägg (1978) recently suggested a means of extending decision analy-
sis to take into account the possibility degrees of actions. Let X =
{x

1
, . . . , x

n
} be the set of actions and C = {c

1
, . . . , c

m
} be the set of

possible outcomes of the actions. p(c
i
| x

j
) denotes the probability of

outcome c
i
 when action x

j
 is performed. Traditionally, we have

p
i = 1

m

∑ (ci | xj ) = 1, j = 1,n.

Suppose we now have a possibility distribution p over X. Hägg suggested
the following interpretation of p: an external outcome c

0
 may occur, which

was unexpected, with a probability of occurrence p′(c
0
| x

j
) = 1 – p(x

j
).

The conditional probability distribution is modified to

p′(c
0
| x

j
) = p(c

i
| x

j
)p(x

j
).

Given the payoff values ν
0
, ν

1
, . . . , ν

m
 of the outcomes, then the expected

opportunity costs of the actions are

;j = 1, n,    V
j
 = ′p

i = 0

m

∑ (ci | xj )υi .

ν
0
 may be difficult to estimate in real situations.

β.    Fuzzy Behavioral Choice Model    (Enta, 1976)

Classical choice models were criticized by Simon (NF 1967). The main
reproach was the necessity, for the decision-maker, of assigning numerical
payoffs and definite probabilities to outcomes. To avoid these difficulties,
Simon proposed the following behavioral model.

Let X be a set of actions, C a set of outcomes, and S a set of states of
nature. ρ(x

j
, s

k
) denotes the set of possible outcomes of action x

j
 in state s

k
.

Assume there exists C′ , C containing the outcomes considered satisfac-
tory. A good action x

j
 must satisfy the requirement

  

Cj = ρ(xj ,sk ) ⊆ ′C
k = 1, q
U .

C
j
 is the set of possible consequences of x

j
. The existence of good actions

may be guaranteed by enlarging C′ (lowering of the aspiration level) or by
shrinking C

j
 (through gathering more information about ρ(x

j
, s

k
)).
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Such a model and mechanisms have been “fuzzified” by Enta (1976). In
his formulation C′, s

k
, ρ(x

j
, s

k
) are fuzzy sets. The mechanisms that

guarantee the existence of good actions may be straightforwardly extended
by modifying the fuzziness of the different sets involved.
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Chapter 4
FUZZY CONTROL

There have been two kinds of applications of fuzzy sets in control
theory. First, the Bellman and Zadeh (1970) approach to decision-making
was used in optimal control problems in which the choice of performance
criteria is both a matter of subjectivity and computational tractability.
Secondly, Zadeh’s linguistic approach to fuzzy systems has motivated
many works dealing with the synthesis of fuzzy logic controllers for
complex processes. This brief chapter successively surveys these two appli-
cations of fuzzy set theory.

A.   FUZZY OPTIMAL CONTROL

Let us consider the discrete state equation of a linear time-invariant
system: s(t + 1) = As(t) + Bu(t), t [ N, where s(0) is an n-dimensional real
initial state vector, s(t) an n-dimensional real state vector, u(t) an r-
dimensional real control vector; A and B are n 3 n and n 3 r real
matrices, respectively. The optimal control problem is to find a sequence of
inputs (possibly of a fixed length) in order to reach a prescribed final state
(i.e., the goal). There may exist constraints on the control sequence and on
the intermediary states of the dynamic system.

a.   Characterization of a Class of Fuzzy Optimal Control Problems
(Fung and Fu, 1974b)

Assume both the final time t
f
 and the control sequence u(0), u(l),

. . . , u(t
f
– 1) are unknown. Let V = U* 3 N where U* is the set of
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possible control sequences. Any element υ = (u, t
f
) [ V represents a con-

trol sequence =u(0), . . . ,u(t
f
– 1) such that the process terminates at

time t
f
. Let C(t), X(t), T, and F be fuzzy constraints on the control value

and on the state at time t, on the final time and on the final state,
respectively. These can be viewed as fuzzy sets on V (using cylindrical
extensions). m

C(t)
(υ) is a membership value of u(t) and depends inversely

on the magnitude of u(t). m
X(t)

(υ) is a membership value of the state s(t)
that is reached at time t when the control sequence u = u(0),, . . . ,u(t – 1)
is applied. T is a fuzzily fixed final time. m

T
(υ) decreases with t

f
. F is a

fuzzy target set. m
F
(υ) is the membership value of x(t

f
) when υ =

(u(0), . . . ,u(t
f
– 1),t

f
).

The fuzzy constraint sets defined above can be viewed as a collection of
optimality criteria for υ. The overall fuzzy goal set is obtained as a result of
amalgamating the whole collection of criteria:

m
J
(υ) = m

T
(υ) ∗ m

F
(υ) ∗ (m

c(0)
(υ) ∗ m

c(1)
(υ)∗ · · ·∗m

c(tf – 1)
(υ))

∗ (m
X(0)

(υ) ∗ m
X(1)

(υ)∗ · · ·∗m
X(tf – 1)

(υ))

where ∗ denotes an aggregation operator such as min, max, product, etc.
(see 3.B.a and 3.C.a).

b. Special Problems Using Particular Criteria

The fuzzy multistage decision-making problem stated above has been
solved in the literature for special kinds of optimality criteria, namely when
∗ is min, product, and a linear convex sum.

α. Pessimistic Criterion

We suppose here ∗ = min. The optimality criterion becomes

m
J
(u(0), . . . ,u(t

f
), t

f
)

  
= min µT tf( ),  µF s tf( )( ),  min

0 < t < tf
 µC t( ) u t( )( ),  min

0 < t < tf
 µ X t( ) s t( )( )




. (1)

An optimal control sequencêθ with terminal time ̂tf
 satisfies the condition

Bellman and Zadeh (1970) dealt with the following subcase of fuzzy
optimal control problems with pessimistic (see 3.B.a) criterion. The system
under control is a finite deterministic automaton; there is no constraint on
the state at time t, except for t = t

f
, which is assumed given. Moreover,

there is a constraint on the control sequence to be determined. The

µ J θ̂ , t̂f( ) = sup
θ ∈U
tf ∈Ν

µ J θ , tf( ).
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criterion is then

m
J
(θ) = min [m

F
(s(t

f
)), min m

c(t)
(u(t))]. (2)

             
0 < t < tf

To solve this problem a dynamic programming method was proposed by
Bellman and Zadeh (1970). (See also Chang, 1969.) The method is carried
out by applying the “optimality principle’,, which asserts that if u(0),
. . . ,u(t

f
– 1) is an optimal control sequence on 0, . . . , t

f
– 1, then ;t <

t
f
– 1,u(t), . . . , u(t

f
– 1) is optimal on {t, . . . , t

f
– 1} . We have

m
J (θ̂ )

= sup
u 0( ), . . . ,u tf – 2( )  

min µC 0( ) u 0( )( ),  .  .  .  ,µC tf – 2( ) u tf  −  2( )( ),  µ 'tf − 1 s t f −  1( )( )( )
where

  µ 'tf –1 s tf – 1( )( )
= sup

u tf – 1( )
min µ

C tf – 1( ) u tf – 1( )( ),µF δ s tf – 1( ),u tf – 1( )( )[ ]





and s(t + 1) = d(s(t),u(t)),t [ N , is the state equation of the automaton.
By iteration, we get the following equations which provide an optimal
control sequence,

µ 'tf –i s tf – i( )( ) = sup
u tf – i( )

min µ
C tf − i( ) u tf – i( )( ),µ 'tf − i+1 s t f – i+1( )( )( )

s tf – i+1( ) = δ s tf – i( ),u tf – i( )( ),      i = 1, tf , (3)

with µ 'tf = µF.  Note that since the final state is known only fuzzily, the
above equations must be iteratively solved for all possible final states.
Bellman and Zadeh (1970) also solved the problem when t

f
 is not known

and unconstrained and the final state must belong to a fixed ordinary set
of states. Lastly Kacprzyk (1978) addressed the same problem, assuming a
fuzzy constraint on the termination time.

Fung and Fu (1974b) solved the optimal control problem using (2) on a
linear continuous unidimensional system. They also give a solution method
for the same linear system with time-independent fuzzy constraints on the
final time and the input sequence; the final state is assumed to reach a
given time-dependent moving target z(t), i.e., s(t

f
) = z(t

f
). The correspond-

ing optimality criterion is

µ J θ , tf( ) = min µT tf( ), inf
0 ≤ t < tf

µC u t( )( )



 . (4)

The pessimistic criterion was also studied by Gluss (1973) for the
optimal control of a single-input, single-output discrete system where
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inputs and outputs are valued on an infinite space. The final time is
assumed known, and there are fuzzy constraints on the input and on the
state at any time. The corresponding optimality criterion is

µ J θ( ) = min µ X 0( ) s 0( )( ),  .  .  .  ,µ X tf( ) s tf( )( ),(
    µC 0( ) u 0( )( ),  .  .  .  ,µC tf – 1( ) u tf – 1( )( ))

where m
F
 = m

X (tf)
. Gluss (1973) solved this fuzzy state regulation problem

using a dynamic programming method.
Fung and Fu (1974a) have criticized the pessimistic criterion because it

does not allow any trade-off between the membership values of the
elementary criteria. This entails a “highly insensitive optimality criterion
which virtually depends on the worst stage of the whole process” according
to these authors.

b.  Other Optimality Criteria

Alternative optimality criteria that do not have the drawback mentioned
in a have been studied in the literature. Fung and Fu (1974a) considered
the optimal control of a finite deterministic automaton with a fuzzy goal
expressed as a convex combination of the elementary criteria,

µ J θ( ) = αµF s tf( )( ) + 1 − α
tf

µC t( )
t = 0

tf – 1

∑ u t( )( ).

They gave an algorithm for determination of the kth optimal policy (i.e.,
control sequence).

A linear convex optimality criterion was also studied by Gluss (1973).
Moreover, he dealt with a product optimality criterion similar to (5) where
product replaces min. He noticed that, when the membership functions of
C(t) and X(t) are, for t = 0, t

f
– 1,

µ X t( ) s t( )( ) = exp – a2 s t( )2[ ],  µC t( ) u t( )( ) = exp – u t( )2[ ],
and m

F
(s(t

f
)) = exp[–b2s(t

f
)2], then we recover the usual quadratic opti-

mality criterion

which expresses the necessity of keeping s(t) “small” for all t, subject to
the requirement that u(t) is not too “large” for all t. Obviously, the
quadratic criterion corresponds to a fuzzy objective.

The choice of an optimality criterion is however a matter of experience
and seems very difficult to justify a priori.

u t( )2 + a2s t( )2( ) + b2s tf( )2
,

t = 0

tf –1

∑
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Remark  An extension of this approach to stochastic optimal control
was carried out in a similar manner by Bellman and Zadeh (1970), Gluss
(1973), and Jacobson (1976).

B. SYNTHESIS OF LINGUISTIC CONTROLLERS

Fuzzy controllers have been introduced by Mamdani (1974) and by
Mamdani and Assilian (1975) for control of complex processes, such as
industrial plants, especially when no precise model of the process exists
and most of the a priori information is available only in qualitative form.
It has been observed that a human operator is sometimes more efficient
than an automatic controller in dealing with such systems. The intuitive
control strategies used by trained operators may be viewed as fuzzy
algorithms (Zadeh, Reference from III.3, 1973), which provide a possible
method for handling qualitative informations in a rigorous way. This
section gives a brief outline of this approach. More detailed surveys can be
found in Mamdani (1977a) or in Tong (1977).

a.   Structure of a Fuzzy Controller

The purpose of controllers is to compute values of action variables from
observation of state variables of the process under control. The relation
between state variables and action variables may be viewed as a set of
logical rules. When this relation is only qualitatively known, fuzzy logical
rules may be stated to implement an approximate strategy. An example of
such a fuzzy rule is: if pressure error is positive big or positive medium, then
if change in pressure error is negative small, then heat input change is
negative medium, where “positive big” and “positive medium” are fuzzy
sets on a discrete universe of pressure error values; similarly, “negative
small” or “negative medium” are fuzzy sets, but not on the same universe.

Such rules are of the form:

if X is Ai
, then ( if Y is B

i
, then Z is C

i
),  (6)

which is a conditional proposition (see III.1.E.d.d). To translate this
proposition, most authors used the min operator instead of a logical
implication.* The conditional proposition is then equivalent to the fuzzy
relation

µRi
X,Y, Z( ) = min µ Ai

X( )min µBi
Y( )µCi

Z( )( )( )
   = min µ Ai

X( ),µBi
Y( )µCi

Z( )( ).
*Note that here, in propositions such as "X is A

i 
,"  X and A

i
 refer to the same universe.
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When a set of n fuzzy rules is available, the resulting fuzzy relation R is the
union of the n elementary fuzzy relations R

i
, i = 1, n:

m
R
 (X, Y, Z) = max

i
 µRi , (X, Y, Z ).

N.B.:  An intuitive justification of this method of translation and aggre-
gation of the rules is the following: given the two consistent and nonredun-
dant rules,

if X is A, then Y is B,

if X is A , then Y is unrestricted,
we get

µR X,Y( ) = max min µ A X( )µB Y( )( )min 1– µ A X( ), 1( )[ ]
= max 1– µ A X( ), min µ A X( ), µB Y( )( )[ ],

which is nothing but the implication 3
→  (see III.1.B.c).

If the state variables X and Y take fuzzy values A′ and B′, respectively,
the fuzzy value C' of the action variable Z is obtained by applying the
compositional rule of inference   C' = A' × B'( ) o R
or

µC' Z( ) = max
X, Y

 min µ A, X( ),µB Y( ),µR X,Y, Z( )( ).

The A
i
, B

i
, and C

i
 are prescribed fuzzy sets on finite discretized universes

which represent the possible ranges of measurement or action magnitudes.
In fuzzy controllers the inputs (e.g., X, Y) are usually precisely observed

quantities, hence, not fuzzy; if, for instance, X
0
 and Y

0
 are the observed

inputs, the compositional rule of inference reduces to

µC' Z( ) = µR X0 ,Y0 , Z( ).

Furthermore, the output (e.g., Z) of the fuzzy controller, which must
serve as input of the controlled process, thus has to assume nonfuzzy
values. A decision procedure must be used to “unfuzzify” C9, i.e., to obtain
a nonfuzzy value “compatible” with C9. An obvious method is to choose
the value that corresponds to the maximum of their membership function;
when several values are possible, their average is chosen (mean of maxima
method). Another obvious technique is to form an average based on the
shape of the membership function.

N.B.:  1. Of course, more complicated rules than (6) may be consid-
ered.

2.  Sets of linguistic conditional rules can be conveniently displayed in
the form of decision tables. An example in Fig. 1 is from Kickert and
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Figure  2.   SE, speed error;  CSE,  change in speed error;  L, large; M, medium;  S,  small.

  Figure 1 .    PB, positive big; PM, positive medium; PS, positive small; PO,positive zero;
and analogously for negative.

Mamdani (1978) (the cells of the matrix contain the possible linguistic
values of the outputs of the controller). Such decision tables are not
necessarily complete. MacVicar-Whelan (1976), starting from a completed
decision table (see Fig. 2a), first refined it as sketched in Fig. 2b, and
suggested that “fuzzified” versions of Fig. 2b (see Fig. 2c) could be more
realistic representations of the actual behavior of a human operator, whose
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strategy is modeled by the linguistic rules, in order to synthesize a fuzzy
controller.

3.  A set of linguistic rules can also be expanded into a fuzzy flowchart.
Actually, linguistic rules may be viewed as fuzzy instructions (see III.3.B.c.
d).

4.  Gaines (Reference from III.1, 1975) has made experiments to com-
pare fuzzy and stochastic logics (see III.1.B.b.g for the latter). It was
concluded that no significant difference in control policy resulted from
combining the fuzzy rules using any of the logics. “The robustness of the
result to radical changes in the assumptions underlying the logical calculus
used is an encouraging indication of the basic robustness of the tech-
nique.”

5.  Willaeys and Malvache (1976) use a referential of fuzzy sets (see
II.l.F.c.g) in order to save computer memory storage.

b. Determination of a Fuzzy Controller

The relation R is constructed by assuming three more or less arbitrary
factors, whose choice depends on the experience of the designer. First, it is
necessary to choose appropriate membership functions for the prescribed
fuzzy sets. The second factor is the range of values in the various universes,
i.e., the quantization level that can be widened or narrowed. The third
factor is the set of rules itself. The spreads of the prescribed fuzzy sets and
the quantization level must be fitted to the sensitivity of the process.
Moreover, the number of prescribed fuzzy sets on a given universe must be
sufficient so as to constitute a satisfactory covering for it. Hence, a good
way of tuning the controller is to modify the set of control rules, i.e., add
or delete rules or replace some Ci

 by other prescribed fuzzy sets.
They are three methodologies for the determination of a good set of

rules:
(1)  A linguistic description of a control strategy used by a skilled

operator will serve, provided that the speed of the process allows direct
manual control. The rules obtained are of the form: if the error is positive
big and the derivative of the error is positive medium, then set the control
variable to negative medium. Anyway, the identification of the protocol
used by the operator is not always easy.

(2)  When the speed of the process is too fast to be manually controlled,
it is possible to analyze records of system responses to prototypes of input
sequences. The rules obtained are then of the form: if the control variable
is set to positive medium and the error is negative medium and the
derivative of the error is positive big at time t, then at time t + 1 the error
will be negative small and its derivative positive medium. Willaeys et al.
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Figure 3 . —one dominant rule; —two contradictoly rules; —no satisfactory rule.

(1977)  compaired these two aproaches in a case study;  because of the
high speed of the process, they used an analog simulation to slow it in
order to allow manual learning of control strategies. The best results were
obtained with approach (1) because it is based on an effective learning
procedure. However, the corresponding controller was less robust because
perturbations were not simulated.

(3)  A rule modification algorithm was proposed by Mamdani and
Baaklini (1975) in order to automate the alteration of rules “by introducing
a form of adaptive behaviour into the controller.” This idea was also
developed by Procyk (1976). See the next chapter for details.

The quality of the control rules used can be assessed by the shape of the
membership functions of the calculated controller output fuzzy sets. The
existence of a dominant control rule in a given state of the process is
indicated by an output membership function presenting a single strong
peak; a very low membership value of this maximum indicates that some
rules are missing. When two distinct strong peaks exist, contradictory rules
are present in the controller; see Fig. 3 (from King and Mamdani, 1977).
c. Performance and Results
c.     Performance and Results

The problem of stability of the controller was discussed by Mamdani
(1976b, 1977a). He pointed out that “stability analysis relies on the
availability of the mathematical model of the process.” However, the main
advantage of a fuzzy controller is that its synthesis does not require the
existence of such a model. Hence the discussion on stability seems some-
what irrelevant for fuzzy controllers. They are implicitly assumed robust
because they are based on human experience. “A confidence in the quality
of control can always be obtained by running [the controller] in open-loop
with the human operator present to make any changes in its structure to
improve its performances.” Nevertheless, Kickert and Mamdani (1978)
have shown that, under certain restrictive assumptions, the fuzzy controller
can be viewed as a multidimensional (multiple inputs, single output)
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multilevel relay. In this restricted framework a frequency domain stability
analysis has been carried out by Kickert and Mamdani (1978) on an
example for a system made up of a fuzzy controller and the modeled
process. This analysis was possible because the fuzzy controller could be
proved equivalent to a conventional nonlinear one. But generally a fuzzy
controller cannot be described by an analytical function, so most of
modern nonlinear system theory is not applicable.

Fuzzy controllers have been experimented with by many researchers
who compared them with DDC algorithms or PID controllers, on highly
nonlinear processes generally. The results obtained were good and some-
times better than those of classical methods. Numerous case studies can be
found in the appended bibliography. Most of these deal with control of
industrial processes such as warm water plants, heat exchanger systems,
sinter plants, etc. The successful attempt of Pappis and Mamdani (1977) to
apply fuzzy logic to the control of a traffic junction indicates that other
problems can be investigated with this approach.
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Chapter 5
FUZZY SETS IN
LEARNING SYSTEMS

“A learning system (or automaton) can be considered as a system (or
automaton) which demonstrates an improvement of performance during
its operation from a systematic modification of its structure or parameter
values” (Fu, NF 1976). A very well-known model of a learning system is
the variable structure stochastic automaton (see Varshavskii and Voront-
sova, NF 1963; McLaren, NF 1966). In this model the evolution of
transition probabilities or state probabilities reflect the information that
the automaton has received from the input in such a way that the system
performance can be improved during operation.

The same approach has been employed using a fuzzy automaton instead
of a stochastic one, and more recently using a conditional fuzzy measure.
This is the topic of Section A. A radically different learning process, for
on-line improvement of fuzzy linguistic controllers, is presented in Section
B. This chapter is just a short survey of the existing works.

A.   LEARNING WITH AUTOMATA OR FUZZY CONDITIONAL MEASURES

A basic learning system is given in Fig. 1 (Wee and Fu, 1969). The
unknown environment is assumed to be a system that on receiving the
input u returns the output y = f(u). The goal is to find û such that a given
performance evaluator, which depends on y and u, is optimized. The
learning system works as follows: first, a decision is made, i.e., a given u is
chosen and sent to the environment, which ouputs y = f (u). Secondly, the
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Figure 1

performance evaluator is used to compare the decision with the previous
ones, from knowledge of u and y. Thirdly, the learning section is modified
as a consequence and a new decision is made, which is supposed to be
better than the previous ones. This procedure is iterated until convergence
of the learning section, i.e., the goal has been attained. Here, the learning
section consists in a fuzzy automaton or an inference model based on
fuzzy integrals in the sense of Sugeno.

a.   Fuzzy Automaton

Wee and Fu (1969) considered a fuzzy automaton with nonfuzzy inputs
i(t) and a time-dependent fuzzy transition relation d(t). Let ~s(t) be the
fuzzy state of the automaton at time t, i.e., a fuzzy set on the finite set
S = {s

1
, . . . ,s

n
}. The value i

l
 of i(t) may depend on y(t), the output of the

unknown environment. The fuzzy state at time t + 1 is defined through a
max–min composition:

m
~s(t + 1)

(S
k
) = max

j
min(m

~s(t)
(s

j
), m

d(t)
(s

k
, i

l
, s

j
));

and alternatively a min–max composition:

µ s̃ t + 2( ) sk( ) = min
j

max µ s̃ t + 1( ) sj( ),  µδ t + 1( ) sk , ′il , sj( )( ).
The learning behavior is reflected by having nonstationary fuzzy transition
matrices with a convergence property. Wee and Fu (1969) have proposed
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the reinforcement algorithm

µδ t( ) sk , il , sj( ) = µδ t − 1( ) sk , il , sk( )      ∀ j ≠ k,

µδ t( ) sk , il , sk( ) = αkµδ t − 1( ) sk , il , sk( ) + 1 − αk( )λ k t( ) ,

where 0 < α
k
 < 1 and 0 < λ

k
(t) < 1, k = 1, n. The α

k
 are constants that are

related to the speed of learning. When the λ
k
(t) are known a priori, we are

in the situation of a perfect teacher. Here, the λ
k
(t) depend on the

performance evaluation, which serves thus as an unreliable teacher. Let
lim

t → ∞λ
k
(t) = λ̂ k , then m

d(t)
(s

k
, i

l
, s

j
) → λ̂ k  when t → ∞. Wee and Fu (1969)

proved that µ s̃ t( ) (sk
) → λ̂ k  when t → ∞. The convergence holds whether or

not a priori information is available, i.e., the m
~s(0)

(s
j
) may be assigned any

value in [0, 1]. Each state s
j
 of the fuzzy automaton corresponds to a

possible input of the unknown environment. When ~s(t) has been calcu-
lated, the decision (i.e., the choice of an s

j
) is based on the maximum grade

of membership:

µ s̃ t( ) sj( ) = max
k

µ s̃ t( ) sk( ).
However, a pure random choice is allowed if m

~s(t)
(s

j
) is below a given

threshold.
Wee and Fu (1969) applied their learning model to pattern classification

and control systems. Fu and Li (1969) used it for the determination of
optimal strategies in games against a random environment and two-
automaton zero-sum games. The fuzzy automaton was advantageously
compared to the stochastic one. More recently, Saridis and Stephanou
(1977) employed the same learning model in a coordination decision-
making problem for the control of a prosthetic arm.

A slightly different learning model is that of Asai and Kitajima (1971a,
b, 1972; Hirai et al., 1968). They considered a complete max–min fuzzy
automaton, i.e., with an output map σ that is a time-varying fuzzy relation
on V × S where V is the output universe. Their purpose was the optimiza-
tion of a multimodal function. The domain of the function is divided into
subdomains that correspond to the nonfuzzy states of the automaton;
every subdomain is also divided into unit domains corresponding to the set
of outputs of the automaton. Therefore, a global search can be executed by
deciding the optimum output over the whole domain of the objective
function, after a local search has been executed in order to find a
candidate point in each subdomain. Global and local search are performed
alternately. A reinforcement algorithm modifies the membership functions
m

d (t)
(s

k
, s

j
) (the input is omitted) and mσ (t)

(ν
i
, s

j
) as follows:

  

µδ t + 1( ) sk , sj( ) = αµδ t( ) sk , sj( ) + 1 − α     if     I t( ) > I0 ,

µσ t + 1( ) υi , sj( ) = αµσ t( ) υi , sj( )                if    I t( ) < I0 ,
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where I(t) is the performance index at time t, which has to be for instance
maximized, I

0
 is a performance criterion which possibly depends on the

previous results, and

α = min(0.99, max(0.5, 1 – | (I(t) – I
0
) / I

0
| ))

(α < 1 to ensure convergence). A success is obtained when I(t) > I
0
 and

the corresponding m
d(t + 1)

(s
k
, s

j
) is increased; if I(t) < I

0
 (failure), it is

m
s(t + 1)

(υ
i
, s

j
) that is decreased. In Kitajima and Asai (1974) time-varying

subdomains are allowed. This method can be used for the adaptive control
of dynamic systems; the performance index then evaluates the quality of
control. (See also Jarvis, 1975.) An application of this approach to a
nuclear engineering problem can be found in Serizawa (1973) and to
structural identification of hierarchical systems in Tazaki and Amagasa
(1977) (see also Chapter 8 for this application).

b.   Conditional Fuzzy Measure

Sugeno and Terano (1977; Terano and Sugeno, 1977) recently proposed
a learning model formulated using the concept of conditional fuzzy mea-
sure. It is similar to a Bayesian learning model in a stochastic environment.
(See, e.g., Duda and Hart, NF 1973.)

Let X be a finite set and g
X
 a fuzzy measure on X. Let h be a function

from X to [0, 1]. Assume X = {x
1
, . . . , x

n
} and h(x

1
) < • • • < h(x

n
).

Then

)
X
h(x) + g

X
( • ) = max

i=1, n
min h xi( ), gX Hi( )( )

where H
i
 = {x

i
, x

i + 1
, . . . , x

n
} (see II.5.A.b.α).

X is now viewed as a set of causes; let Y= {y
1
, . . . ,y

m
} be a set of

results. The problem is to estimate causes through a fuzzy information. Let
g

Y
 be a fuzzy measure on Y; g

Y
 is assumed to be related to g

X
 through a

conditional fuzzy measure s
Y
( • | x), i.e.,

g
Y
( • ) =)

X
s

Y
( • | x) + g

X
( • ).

g
X
 is viewed as an a priori weighting of causes by an estimator. s

Y
(F | x),

where F # Y, is the grade of fuzziness of the statement, “One of the
elements of F results because of x.” F is the information; in the determin-
istic case it is a singleton, but it may be a fuzzy set as well. g

Y
({ y})

expresses the grade of fuzziness of the statement “y actually results,” and
“m

F
(y) represents the accuracy of the information objectively.” We have

g
Y
(F) = )

Y
m

F
(y) + g

Y
( • ) = )

X
s

Y
(F | x) + g

X
( • )
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where s
Y
(F | x) = )

Y
m

F
(y) + s

Y
( • | x) (see II.5.A.c). Since X is finite,

gY F( ) = max
i=1, n

min σY F | xi( ), gX xi , xi + 1, . . . xn{ }( )( )
where the s

Y
(F | x

i
) are increasingly ordered.

After having new information F, the degree of confidence g
Y
(F) in F

must be increased. This is done by modifying the fuzzy measure g
X

through a reinforcement algorithm.
Let {x

l
, . . . , x

n
} be the set of x

i
 that are explicitly involved in the

calculation of g
Y
(F). l is the smallest i such that g

X
({ x

i
, . . . , x

n
})

< s
Y
(F | x

i
). Following Sugeno and Terano (1977; Terano and Sugeno,

1977), g
X
( • ) and s

Y
( • | x) are assumed to be λ-fuzzy measures (see II.5.A.a.

g). The greater is g
X
({ x

i
}) ( i > l) and the smaller is g

X
({ x

i
}) ( i < l), the

greater is g
Y
(F). Hence, g

Y
(F) is improved by the reinforcement rules:

′g x xi{ }( ) =
α gX xi{ }( ) + 1− α( )σY F | xi( ),  i = l, n,

α gX xi{ }( ), i = 1, l − 1,







with 0 < a < 1. Owing to the above expressions, g′
X
((x

i
}), the new

g
X
({ x

i
}), always remains smaller than s

Y
(F | x

i
) because it is useless to

have it greater. a is related to the speed of convergence of g
X
({ x

i
}). The

following properties are proved in Sugeno and Terano (1977):

the final values of the g
X
({ x

j
}) do not depend on a priori values, but are

equal to s
Y
(F | x

i
) for x

i
 that makes s

Y
(F | x

j
) a maximum value and equal

to zero for the other x
j
 when the same information F is repeatedly given;

when the same information F such that m
F
(y) = C ;y is repeatedly

given, the g
X
({ x

i
}) converge to C ;i.

Sugeno and Terano (1977; Terano and Sugeno, 1977) applied their
learning model to the macroscopic search for a maximum of a multimodal
function. The search domain is divided into blocks that correspond to the
elements of Y. X is a set of criteria or types of clues through which one
guesses whether a block contains the actual maximum. g

X
 expresses the

grade of importance of subsets of criteria. The criteria may concern for
instance the number of points examined in the previous searches or the
average of the function obtained in previous searches. s

Y
({ y

j
} | x

i
) evalu-

ates the belief of finding an extremum in block y
j
 owing to the type of clue

x
i
. For instance, s

Y
({ y

j
} | x

i
) may depend on the number of previously

searched points in the block y
j
. The available information F is given by

µF yj( ) = pj − min
k

pk( ) max
k

pk − min
k

pk( )
where p

j
 is the maximum of the multimodal function found so far in block

y
j
. Note that F converges to the maximizing set of the function (see
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II.4.B.a). g
X
 is subjectively initialized, and s

Y
({ y

j
} | x

i
) is calculated at first

from an initial random search. At each iteration a given number of new
points are tested, the number of these points in block y

j
 is chosen in

proportion to g
Y
({ y

j
}) .

A current iteration works as follows: from the result of a search s
Y
( • | x

i
)

is calculated in each y
j
 and normalized (see II.5.A.a.g); g

X
 is normalized;

g
Y
({ y

j
})  is calculated from s

Y
 and g

X
; g

Y
(F) is then obtained, and the

g
X
({ x

i
}) are corrected by the reinforcement rules. Then a new search is

performed. This iteration is repeated until g
Y
 converges.

Sugeno and Terano (1977) have compared their model with a Bayesian
learning model. Bayesian inference is now briefly reviewed. Let p

X
 be an a

priori probability density on X and r
Y
( • | x

i
) a conditional probability

density with respect to x
i
. The conditional probability of a fuzzy event F is

ρY F | xi( ) = µF yj( )
j = 1

m

∑ ρY yj | xi( ).

Learning is obtained through the Bayes formula, which yields the a
posteriori probability density r

X
 on X after having the fuzzy information

F:

ρX xi | F( ) = pX xi( )ρY F | xi( ) pX xk( )ρY F | xk( )
k = 1

n

∑ .

Note that when constant information m
F
(y

j
) = C ;y

j
 is given, we have

r
X
(x

i
| F) = p

x
(x

i
); that is, in Bayesian terms, obtaining constant informa-

tion is the same as obtaining no information, i.e., learning nothing.
However, the fuzzy model is able to distinguish between obtaining con-
stant information and no information since under constant information the
weighting g

X
 becomes uniform because the information is too fuzzy.

Another difference between the Bayesian model and the one presented
here is the possibility of controlling the speed of convergence by means of
α. Lastly, Sugeno and Terano (1977) claimed that the fuzzy model could be
expected to work “more effectively than a Bayesian learning model” under
fuzzy information.

N.B.:   Sugeno and Terano’s learning model was used by Seif and
Aguilar-Martin (1977) for classification of objects using a sensitive-skinned
artificial hand.

B.   SELF-IMPROVEMENT OF FUZZY LINGUISTIC CONTROLLERS

The learning methods presented in A may be applied to adaptive
nonfuzzy control of dynamic systems. In this section we are interested in
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Figure 2

the design of adaptive fuzzy controllers, i.e., controllers defined by a set of
fuzzy logical rules, as in 4.B.

Mamdani and Baaklini (Reference from IV.4) first suggested a prescrip-
tive method for deriving the best control policy during run time in a fuzzy
logic controller. The main idea is to automate the alteration of fuzzy
control rules and thus obtain a self-regulating fuzzy controller. Such a
controller can be useful when the system under control is subject to
time-varying parameter changes and unknown disturbances.

A self-organizing controller for single-input, single-output systems has
actually been implemented by Procyk (1977). The corresponding block
diagram is shown in Fig. 2. The quality of control is periodically checked
by the performance evaluator, which can modify the structure of the
controller when the control is not satisfactory. This modification is sup-
posed to improve the control strategy.

Controller and performance evaluator are both made up of a set of fuzzy
inference rules relating e(t), c(t) and u(t), and e(t), c(t) and P(t), respec-
tively, where e(t) is the error at time t, c(t) = e(t) – e(t – 1), u(t) is the
control at time t, and P(t) is the control modification at time t (P(t) is
possibly fuzzy). More specifically, P(t) is the modification that should
have altered the controller in order to improve its performance at time t.
The rules of the performance evaluator implicitly define the band within
which the process output is to be restricted. These rules determine the
desired change in the controller to be made in order to keep the process
output within the band. The rules of the controller are of the form

If e is Ei
, then, if c is C

i
, then u is U

i
.

Those of the performance evaluator are of form

If e is E
j
, then, if c is C

j
 then p is P

j
,

where E
i
, E

j
, C

i
, C

j
, U

i
, and P

j
 are prescribed fuzzy sets. The fuzzy output

P(t) of the performance evaluator is calculated from e(t), c(t), and the set
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of fuzzy rules using max–min composition (see 4.B.a). P(t) is used to
modify the control strategy: consider a fuzzy rule i that contributed to the
present bad performance; then U

i
 is modified to U

i
′ = U

i
 % P

i
(t) where %

denotes extended addition. Rule i in the controller is replaced by the rule:

If e is E
i
, then, if c is C

i
, then u is U

i
′.

A detailed description of the implementation of a self-organizing controller
can be found in Procyk (1977). It has been tested on first, second, and
third order linear processes and nonlinear processes (Procyk, 1977).
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Chapter 6
PATTERN CLASSIFICATION
WITH FUZZY SET

It is well known that the concept of a fuzzy set first arose from the study
of problems related to pattern classification (see Bellman et al., 1966). This
is not a posteriori surprising since the recognition of patterns is an
important aspect of human perception, which is a fuzzy process in nature.
Although a great amount of literature has been published dealing with
fuzzy pattern classification, a unified theory is not available yet and a
linguistic approach based on fuzzy sets is far from being completely
developed. The topics of this chapter are clustered around three themes:
pattern recognition, clustering methods, and information retrieval.

A.   PATTERN RECOGNITION

Let V be a set of objects. A way of characterizing an object p [ V is to
assign to it the values of a finite set of parameters considered relevant
for the object. Each parameter is specific to a so-called feature of the ob-
ject p. Thus, p can be associated to a mathematical object x = M(p) =
(m

l
(p), . . . , m

r
(p)) where m

l
 is the measurement procedure associated

with feature i and m
i
(p) is the feature value. x is called a pattern. Note that

there are usually many mathematical objects x that may be associated with
p. The set of mathematical objects will be called pattern space. The above
representation of an object does not take into account its structure.
However, in some situations knowledge of this structure may be of great
help in the recognition process. In this case the object is viewed as a formal
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structure that can be decomposed into primitives. These primitives may in
turn be valued.

The purpose of pattern recognition is to assign a given object to a class
of objects similar to it. According to Zadeh (1976), such a class is often a
fuzzy set F}F is the label of the class. A recognition algorithm, when
applied to an object p, yields the grade of membership, µ

F
(p) of p in a class

F. For instance, when p can be modeled as a string of primitives that can
be derived from a formal grammar, a recognition algorithm may consist in
a parsing procedure. But the grade of membership of an object p in a class
may also be the degree of its similarity to a typical object of the class,
namely a prototype. When the explicit description of the recognition
algorithm is known, this algorithm is said to be transparent; if such a
description is not available, it is said to be opaque (Zadeh, 1976). Human
perception usually uses opaque algorithms to recognize objects. The prob-
lem of pattern recognition is that of converting an opaque recognition
algorithm Rop

 into a transparent one R
tr
. Note that R

op
 acts on p and R

tr

can act only on M(p). The transformation of R
op

 into R
tr
 involves two

steps:

(1) feature extraction: select a small set of measurement procedures m
j

and/or a set of primitives in order to turn p into a mathematical
object x (vector in a pattern space and/or formal structure);

(2) define a transparent algorithm R
tr
 that from M(p) yields the grade

of membership of p in a class F.

The first problem is generally the more difficult. However, we are mainly
concerned here with step (2).

Fuzziness may be present at several levels in a pattern recognition
problem: the pattern classes, the feature values, and even the transparent
recognition algorithm may be fuzzy.

In the following, existing approaches involving fuzzy sets are surveyed;
successively dealt with are semantic pattern recognition (M(p) is a pattern
vector in a feature space) and syntactic pattern recognition (p can be
modeled as a string in a formal language).

a.   Semantic Pattern Recognition

One of the most intuitive ways of defining a fuzzy pattern class is to
assign to each class a deformable prototype (Bremermann, 1976a,b; Al-
bin, 1975). The grade of membership of a given object in the class depends
on the deformation energy necessary to make the prototype close to the
object and the remaining discrepancy between the object and the deformed
prototype (see l.B.b). Lee (1972) has given quantitative measures of the
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proximity of two n-sided polygons; however, he did not consider deforma-
tion energy. The proximity indices are based on angular and dimensional
comparisons. Thus, for instance, triangles can be classified into “ap-
proximate right triangle,” “approximate isosceles triangle,” “ordinary tri-
angle,” etc. Siy and Chen (1974) have a similar approach in a handwritten
numerical character recognition procedure. Each numeral is decomposed
into primitives such as horizontal lines or portions of circles. The authors
use proximity measures for the (semantic) identification of the primitives.
However, the structural part of Siy and Chen’s procedure (graph matching)
is not fuzzy.

Kotoh and Hiramatsu (1973) propose a general approach for the repre-
sentation of fuzzy pattern classes. A feature is viewed as a fuzzy partition
of pattern space, i.e., each member of the fuzzy partition corresponds to a
fuzzy value of this feature. For instance, if the possible fuzzy values of the
feature “height” are “small,” “medium,” and “large,” these values realize
a fuzzy partition provided that the orthogonality condition

µ
small

(m(p)) + µ
medium

(m(p)) + µ
large

(m(p)) = 1      ;p P Ω

holds (m(p) denotes the height of p) (see II.1.B.b). A fuzzy pattern class is
expressed by a logical expression of feature values that correspond to
different features: for instance, the class of objects whose (height is
“medium” or width is “narrow”) and weight is “heavy.” An algebra of
fuzzy-valued features is then developed in Kotoh and Hiramatsu (1973).
Operations such as refinement and unification of fuzzy-valued features,
related to intersection and union of fuzzy sets, respectively, are introduced.
Two pseudocomplementations of feature values are defined; these differ
from the usual fuzzy set complementation: in the above example, “medium
or large” and “medium and large” are the two pseudocomplements of
“small.” Note that in this approach each object is evaluated with respect to
a fuzzy pattern class by means of a fuzzy logical expression (in the sense of
III.1.A.a) that is specific to this pattern class. However, an opaque algo-
rithm cannot always be reduced to the computation of a fuzzy logical
expression.

More specifically, let F be a fuzzy pattern class defined by the fuzzy
feature values F

1
, F

2
, . . . , F

r
 where F

i
 is a fuzzy value of feature i. An

object p is thus characterized with respect to the class F by r membership
values µ Fi

(m
i
(p)) denoted µ

i
(p) for convenience. u

F
(p) is then constructed

by aggregating the µ
i
(p) in some manner. For instance, a “subjective”

aggregation, when features are of unequal importance, could be the
Sugeno (1973) integral. Other aggregation schemes are also possible, espe-
cially those presented in 3.B.a. It seems that the choice of an aggregation is
very context-dependent.
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Usually, there are several (fuzzy) pattern classes F1, . . . , Fs, and the
recognition problem is to assign a given object p to a definite class. When
the membership values µ

F j (p) are available, p is assigned to the class k
such that µ Fk (p) = max

j
 µ

F j (p) provided that µ Fk (p) is sufficiently large.
Otherwise, a new pattern class Fs + 1 may be created for p. Once more, a
maximum meaningfulness principle has been applied.

Remark  Perceptrons, introduced by Rosenblatt (NF 1961; see also
Minsky and Papert, NF 1969), have been considered as decision machines
in pattern recognition problems. The object p is accepted in a class F iff

α1
µ F1

(p) + ⋅ ⋅ ⋅ + α
r
µ Fr

(p) > θ

where the F
i
 are crisp sets and the α1 and θ belong to R. Kaufmann (1977,

Reference from I) has recently considered “fuzzy perceptons” where the F
i

are fuzzy sets; more general aggregations of the µFi  are possible.

Zadeh (1976) has suggested another approach to the pattern recognition
problem. The features are linguistically valued, and the dependence be-
tween µ

F
(p) and the feature fuzzy values ̃mj

(p) are expressed as an
(r + 1)-ary fuzzy relation R

F
 on X

1
 × ⋅ ⋅ ⋅ × X

r
 × [0, 1] where X

j
 is the

universe of m̃j
(p). R

F
 is specific to the fuzzy pattern class F. R

F
 can be

derived from a relational tableau (see 2.B.d.β) having n lines and r + 1
columns. Let p

i
j denote the current term of the tableau; each line i

corresponds to the fuzzy rule: if m
l
(p) is r

i
1 and if . . . and if m

r
(p) is r

i
r,

then µ
F
(r) is r

i
r+1, where r

i
j is a linguistic feature value for j < r and r

i
r+1

is a linguistic truth value. A first way of calculating µ
F
(p) is to explicitly

construct

R
F 

=      pi
j

j=1, r+1
I

i=1,n
U ;

then, knowing the linguistic feature values m̃i
(p), i = 1,r, of an object p,

µ
F
(p) is obtained by max-min composition:

µ
F
(p) = [ m̃1

(p) × ⋅ ⋅ ⋅ × m̃r
(p)] + R

F
.

Note that F is a type 2 fuzzy pattern class.
Another way of determining µ

F
(p) is to build a branching questionnaire

(see 2.B.d.,β) by viewing each column j of the relational tableau as a set of
possible answers to a question concerning feature j. Analogously, Chang
and Pavlidis (1977) discussed certain theoretical aspects of fuzzy decision
trees. A fuzzy decision tree is a tree such that each nonleaf node i has a
k-tuple decision function f

i
 from Ω to [0, 1]k and k ordered sons. Each

nonleaf son j of a node i corresponds to a question determined by the
answer to the preceding question i. f

i
(p; j) valuates the branch from i to j.
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Figure 1.  m
F
i(p): 

min: 0.3 0.5 0.5 0.1

product: 0.15 0.45 0.30 0.06

Each leaf corresponds to a pattern class. Each path of the decision tree
from the root to a leaf l represents the decision p [ Fl. Each decision (leaf)
is valued by the minimum (or the product) of the decision values f

i
(p; j) of

the branches composing the path. The object is finally assigned to the
pattern class that ends the best valued path. An example of a fuzzy
decision tree is pictured in Fig. 1 with k = 2. The problem of optimizing a
decision tree is to find the best path without computing the decision values
of the others. Chang and Pavlidis (1977) use a branch–bound–backtrack
method to optimize the fuzzy decision tree. Note that their approach
differs from Zadeh’s in which a decision tree (branching questionnaire) is
characteristic of a pattern class and the leaves are the r

i
r+1. Moreover, in

Chang and Pavlidis’s model the truth values f
i
(p; j) are numerical and not

linguistic.

Remark 1 Recognition of binary discretized images using fuzzy logic.
Let M(p) be a binary vector (x

1
, . . . , x

r
) that represents a discretized

picture. To each pattern class F, Shimura (1975) associates four matrices
G

00
, G

0l
, G

l0
, G

11
 where

;(k, l) [ {0, 1} 2,   G
kl
(i, j) = prob[p [ F  x

i
 = k, x

j
 = l],

i = 1, r; j = 1, r.

The values of the G
kl
(i, j) are learned through a reinforcement algorithm

similar to those of 5.A.a. Max-min or min-max compositions between
M(p) and the G

kl
(i, j) are used to evaluate the compatibility of p with the

pattern class F.
In Mukaidono (1977) the patterns are allowed to be noisy, i.e., each x

i

belongs to [0, 1]. Let I(p) be the original nonnoisy pattern and M(p) be
the noisy one. The noise, a vector N, is the absolute value of the difference
M(p) − I(p). It is easy to see that M(p)= I(P)nN(p) (n denotes the
symmetrical difference (see II.1.B.f) associated with (  3̃(·), <, >,–) (see
III.1.B.b.a)). Mukaidono (1977) studies the existence of a quantization
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threshold able to resolve the ambiguity (in the sense of III.l.A.b.α) caused
by the noise.

2  A methodology for a speech understanding system using fuzzy set
theory has been proposed by De Mori and Torasso (1976). The correspon-
dence between spectrogram segments and lexicon words is described as a
fuzzy relation. The first speech-understanding system using fuzzy sets
seems to be the one by Brémont (Reference from V).

b.   Syntactic Pattern Recognition

The idea behind syntactic pattern recognition is that certain pattern
classes contain objects, such as geometric figures, that have an identifiable
hierarchical structure that can be described by a formal grammar, called
the pattern grammar. A basic set of pattern primitives is selected and forms
the set of terminals of the grammar. The productions of the grammar are a
list of allowable relations among the primitives. The pattern class is the set
of strings generated by the pattern grammar. However, the concept of a
formal grammar is often too rigid to be used for representation of real
patterns, which are generally distorted and noisy, yet still retain much
underlying structure. Stochastic techniques for describing such distorted
and noisy patterns can be found in Fu (NF 1974).

Thomason (1973) has suggested that fuzzy languages could handle
imprecise patterns when the indeterminacy is due to inherent vagueness.
The fuzziness may lie in the definition of primitives or in the physical
relations among them. Thus, the primitives become labels of fuzzy sets and
the production rules of the grammar are weighted. The membership grade
of a particular pattern in the class described by the grammar is calculated
using max−min composition (see III.3.A.b), i.e., the grammar is fuzzy. The
possibility of applying fuzzy grammars to the recognition of leukocytes
and chromosomes is discussed in Lee (1973). Kickert and Koppelaar
(1976) used an ordinary context-free grammar with a set of fuzzy primi-
tives. A fuzzy set of strings compatible with the pattern to be recognized is
generated. The method is applied to the recognition of handwritten capi-
tals; the compatibility of the pattern with each of the 26 letters is calcu-
lated using the min operator. This approach is criticized by Stallings (1977)
who compares it to a stochastic Bayesian one. Fractionally fuzzy gram-
mars (see III.3.A.f) were used by DePalma and Yau (1975) for recognition
of handwritten characters.

An important problem in syntactic pattern recognition is that of gram-
matical inference, i.e., given a set of structured patterns modeled by
strings, find an automatic procedure that yields the production rules of a
grammar capable of generating this set of patterns. A grammatical infer-
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ence method may be useful for determining the grammar associated with
the pattern class. Although such methods already exist for ordinary and
stochastic grammars (see Fu and Booth, NF 1975), the inference of fuzzy
grammars has not received much attention in the literature; see 8.C.

B.   CLUSTERING ALGORITHMS

The primary objective of clustering techniques is to partition a given
data set into so-called homogeneous clusters. The term homogeneous means
that all points in the same group are close to each other and are not close
to points in other groups. Clustering algorithms may be used to build
pattern classes or to reduce the size of a set of data while retaining relevant
information. In classical algorithms it is implicitly assumed that disjoint
clusters exist in the set of data. However, the separation of clusters is a
fuzzy notion, and the representation of clusters by fuzzy sets may seem
more appropriate in certain situations. Whereas fuzzy pattern recognition
has few practical applications yet, fuzzy set theory has given birth to
several new interesting clustering techniques, which are described below. A
survey of classical algorithms for pattern classification can be found in
Duda and Hart (NF 1973).

a.   Detection of Unimodal Fuzzy Sets   (Gitman and Levine, 1970)

The method of unimodal fuzzy sets has been developed to overcome two
drawbacks of usual clustering methods, namely their inability to handle
large data sets (say 1000 points) and to detect clusters that exhibit
complicated distributions in pattern space.

Let X be a finite set of vectors (|X| = n) in a metric space. Let d be the
metric. For all xi [ X, i = 1,n, denote by T

i,θ the set {x [ X, d(x, xi) < θ}
where θ [ R+. A fuzzy set A on X is constructed by assigning to each xi

the membership value µ
A
 (xi) = |T

i,θ|/n. For a given θ, µ
A
(xi) is a measure

of the concentration of points around xi. The maxima µ
A
 correspond to

the “centers” of the clusters existing in X. The clustering procedure
decomposes A into unimodal fuzzy sets (see II.1.F.a) and realizes the
maximum separation among them. The procedure is divided in two main
steps: first, local maxima are identified by a systematic search where both
the order of the points according to their grade of membership and their
order according to distance are used. The second step is the assignment of
each point to a cluster. There are as many clusters as local maxima of µ

A
.

(For further details, see Gitman and Levine, 1970.) Note that the clusters
obtained are not fuzzy sets.
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b.   Fuzzy Partition (Ruspini’s approach)

Ruspini (1969) has introduced the notion of a fuzzy partition to repre-
sent the clusters in a data set. A fuzzy partition is a family of fuzzy sets
F

1
, . . . , F

m
 on X such that

;x [ X,  µ Fi
i=1

m

∑  (x) = 1.

“The advantage of a fuzzy set representation in cluster analysis is that
stray points or points isolated between clusters as well as other types of
uncertainties may be classified as such” (Ruspini, 1973b).

According to Ruspini (1973a), the problem of fuzzy clustering may be
stated as follows. Given a finite data set X and a positive real-valued
function δ (the distance or dissimilarity function), whose domain is X2,
such that

(1) ;x [ X, δ(x, x)= 0,
(2) ;x, y [ X, δ(x, y) = δ (y, x),

find a fuzzy partition F
1
, . . . , F

m
, where m is a priori known, such that

close elements in X (in the sense of δ) will have similar classification
(membership values) and dissimilar elements will have different classi-
fication. The classification of an element x is the vector C(x) =

[ µ F1
(x) ⋅ ⋅ ⋅ µFm

(x)]. One of the possible ways of satisfying the above
requirement is to select the function C(x) so as to minimize some suitably
defined functional. Let us outline Ruspini’s idea for constructing such a
functional.

Let v be a function from [0, 1]m × [0, 1]m to R+ such that v(a, a) = 0 and
v(a, b) = v(b, a), and let f be a positive nondecreasing not identically zero
real function of one real variable satisfying f(0) = 0, then the function C
should be selected such that

;x, y [ X,  v (C(x), C(y)) = f(δ (x, y)).

Generally, this equation has no solution. It is then relaxed into a minimiza-
tion problem: find C minimizing

 w x( )w y( ) v C x( ),C y( )( ) − f δ x, y( )( )[ ]
x,y∈X
∑

2

where w is an appropriate weighting function. Usually, v is taken as a
Euclidean distance. Various forms of f have been tried and discussed in
Ruspini (1970, 1973a) where many experimental results are provided. A
slightly different approach using association measures is described in
Ruspini (1973b). The association measure between a point x and a fuzzy
set F on X is taken as the inverse of a weighted average distance between x
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and F. (The average distance between x and F is defined as

d(x,F) = 
1
F

  
i=1

x

∑ µ
F
(xi)δ(x,xi).

Ruspini’s (1973b) idea is that the membership value of x in a fuzzy cluster
F

j
 varies in proportion with the inverse of the average distance between x

and F.

c.   Fuzzy ISODATA

In some situations we are interested in finding not only a partition of a
data set but also the most representative elements of the data set, i.e., the
cluster centers. This is achieved by the ISODATA algorithm (Ball and
Hall, NF 1967). This algorithm has been improved by allowing fuzzy
clusters to be generated. First, the nonfuzzy version of ISODATA is re-
viewed.

Let X be a finite data set contained in a real vector space V = Rn and let
d denote an arbitrary metric on V. Set diameters and set distances are
defined by

; A , V,  diamA = sup
x, y∈A

 d(x, y),

;A , V,  ;B , V,  d(A, B)= inf
x∈A
y∈B

d(x, y).

d is assumed to be induced by a norm on V, i.e., a metric of the form

d(x, y) = x − y  where  satisfies

;α [ R,   ;u [ V,   αu  =  α  u

and the triangle inequality. Let ̂ = (F
1
, . . . , F

m
) be a hard (i.e., nonfuzzy)

partition of X. conv(F
i
) denotes the convex hull of F

i
 in V (see II.3.C.e).

The subsets F
i
 of a nonfuzzy partition of X are said to be compact

well-separated (CWS) clusters iff for all i, j, k with j ≠ k, any pair (x, y)
with x in F

i
 and v in conv(F

i
) are closer together as measured by d than

any pair (u,v) with u in F
j
 and v in conv(F

k
) (Dunn, 1974a). This property

can be quantified by the index

β(m, ^) = 

    
min

1< i < m
min

1< i < m
j ≠ i

d Fi ,conv F j( )( )





y   max

1< i < m
 diam(F

i
).

According to Dunn (1974a), X can be partitioned into m CWS clusters
relative to d iff

β (m) =
  
max

^
β(m,^) > 1
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(^ belongs to the set of m-partitions of X). The problem of finding an ̂
such that β(m, ^) = β (m) is very difficult. The above index is usually
replaced by the simpler criterion

J(^,υ) =  
x∈Fi

∑
i=1

m

∑ d(x,υ
i
)2

where v is an m-tuple of elements of conv(X) called the cluster centers and
d is now supposed to be induced by an inner product:

d(x,y) = [ (x − y)t M(x − y)]
1

2 .

M is called a sample covariance matrix. Usually, M is taken as the
identity. J(^,υ) can be interpreted as the average least square error of
assimilating the elements of F

i
 to υ

i
, for all i = 1, m. The problem becomes:

find ^* and υ*, for a given m, such that

J(^*, υ*) = 
  
min

^
 inf

v∈conv X( )
 J(^,v).

A local minimum of J is obtained by the following iterative method
(ISODATA):

(1) choose an ̂  = F
1
, . . . , F

m
;

(2) compute the centers υ
i
 of the F

i
;

(3) construct a new partition   ̂̂  according to the rule

x [ F̂i
   iff   d(x,υ

i
) =

  
min

1< j<m
d(x,υ

j
);

(4) if   ̂̂  = ^ stop; otherwise set ̂ =   ̂̂  and go to step (2).

More details can be found in Dunn (1974a) where some limitations of the
above algorithm are discussed. Every partition consisting in CWS clusters
is necessarily a fixed point of ISODATA; however, there are examples
where a fixed point of ISODATA is neither a global minimum of J nor a
global maximum of β(m, ^). This is especially true for small values of
β (m). ISODATA always yields some hard partition even when CWS
clusters do not exist. Hence, when it is not known in advance that CWS
clusters are actually present, “inferences drawn from ISODATA partitions
can be very dangerous” (Dunn, 1974a).

To avoid this difficulty, Dunn (1974a) and Bezdek (1974a, b) have re-
laxed J to allow fuzzy partitions as global minima. More specifically, let
J

w
(^,υ) be equal to

 µFi
x( )[ ]

x∈X
∑

i=1

m

∑
w

d(x,υ
i
)2,    w [ R+
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where
µFi

(x) [ [0, 1]    and    
i=1

m

∑ µFi
 (x) = 1  ;x,  ;i = 1,m.

Bezdek (1974a,b) and Dunn (1974a) have adapted the ISODATA algo-
rithm to the minimization of J

w
(^, υ). Details can be found in the above

references. In particular, it can be shown that (^, υ) may be a local
minimum of J

w
, for w [ ]1, + `) and υ

i
∉ X, i = 1,m, only if

µ Fi
x( ) =

x − vi

2

x − vj

2















w−1( )−1

j=1

m

∑

















−1

,  i = 1,m,      ;x [ X.

      υ
i
 = µ Fi

x( )[ ]
x∈X
∑

w
x / µ Fi

x( )[ ]
x∈X
∑

w
,     i = 1,m.

The first formula replaces the nearest neighbor rule of step (3) of ISO-
DATA. The iterative procedure is initialized either by an m-tuple of F

i
 or

an n-tuple of the υ
i
. Dunn (1974a) proved that for w = 1, when the nearest

neighbor rule is used, ̂ is necessarily a hard partition.
The partition coefficient ϕ

m
(^) is defined by (Bezdek, 1974b)

ϕ
m
(^) = 1

X
 µFi

x( )[ ]
i=1

m

∑
x∈X
∑

2

.

Note that ;x,

1 = µ Fi
x( )

i=1

m

∑



 µ Fj x( )

j=1

m

∑





= µ Fi
x( )( )

i=1

m

∑
2

+ µ Fi
x( )

i≠ j
∑ µ Fj x( ).

Thus, when ϕ
m
(^) = 1, the F

i
 are pairwise disjoint and ̂  is a hard

partition. The minimum of ϕ
m
 is reached for µFi

(x) = m−1 ;i ;x. The
partition coefficient provides a quantitative measure of how “fuzzy” ^ is.
The relation between the partition coefficient and CWS clusters has been
studied by Bezdek (1974b) and Dunn (1974b). They proved that as β (m)
increases the result of the fuzzy ISODATA algorithm becomes necessarily
hard, and further the global minimum of J

w
 becomes arbitrarily close to

the unique optimal CWS clustering of X corresponding to β (m). It is
indicated in Bezdek (1974b) that ϕ

m
(^) may be used for testing the

reliability of the solution of fuzzy ISODATA.
The influence of w on the result of the algorithm was discussed by Dunn

(1974c). When w increases, the partition obtained, for a given X, becomes
fuzzier and fuzzier. For w = 2, the result of the algorithm usually reflects
the actual fuzziness of the clusters in X.
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Gustafson and Kessel (1978) have recently generalized the fuzzy ISO-
DATA algorithm to distances of the form d(x, y) = (x − y)tM(x − y)
where M is no longer the identity.

Fuzzy ISODATA has been applied to medical taxonomy (Bezdek and
Castelaz, 1977; Fordon and Fu, 1976), to Bayesian unsupervised learning
(Bezdek and Dunn, 1975), and to feature selection for binary data (Bezdek,
1976b; Bezdek and Castelaz, 1977).

d.   Graph-Theoretic Methods

The idea underlying the graph-theoretic approach to cluster analysis is
to start from similarity values between patterns to build the clusters. The
data are the entries of a fuzzy symmetrical relation R (or a distance matrix,
in terms of dissimilarity). Usually, the methods described in the fuzzy-set
literature yield nonfuzzy clusters. Several partitions are obtained together
with their “degree of validity.”

Flake and Turner (1968) determine a nonfuzzy partition made up of
maximally coherent clusters. They use the coherence index

D(F) = 
2

n(n − 1) x,y∈F
∑ µ

R
(x, y)

where F is a nonfuzzy subset of X, the data set (X = n). Their algorithm
is enumerative.

Tamura et al. (1971) start from a proximity relation (see II.3.C.d),
compute its transitive closure, and construct the associated partition tree
(see II.3.C.b). They obtain a nested sequence of nonfuzzy partitions. Dunn
(1974d) indicated that this clustering method was related to the well-
known single linkage approach (see, e.g., Duda and Hart, NF 1973).

Yeh and Bang (1975) define several kinds of clusters based on various
notions of connectivity in a fuzzy symmetrical graph. For instance, a
partition can be built from the λ-degree components of the fuzzy graph
(see III.4.B.a). The authors notice that these methods are related to
already-known techniques described in terms of distance rather than of
similarity. However, the fuzzy graph approach is shown to be more
powerful.

Recently, Bezdek and Harris (1978) have suggested that likeness rela-
tions included in the convex hull of the nonfuzzy equivalence relations in
X × X (see 11.3.C.e) could provide a basis for new clustering techniques.
(See also Ruspini, 1977.)

e.   Other New Methods

Instead of defining a fuzzy partition ̂ = (F
l
, . . . , F

m
) by the orthogo-

nality condition µ Fii=1
m∑ (x) = 1 ;x [ X, Zadeh (1976) has proposed the
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fuzzy affinity property in order to characterize fuzzy clusters induced by a
fuzzy relation R. More specifically, F

l
, . . . , F

m
 satisfy the fuzzy affinity

property as soon as:

(1) both x, y, elements of X, have high grades of membership in some
F

i
 iff (x, y) has a high grade of membership in R;

(2) if x [ X has a high grade of membership in some F
i
 and y [ X has

a high grade of membership in some F
j
, j ≠ i, then (x, y) does not

have a high grade of membership in R.

Note that the fuzzy affinity property implies some kind of transitivity for
R. The set of pairs (x, y) having a “high” degree of membership in R can
be found using a fuzzy α-cut R

high
 of R (see II.2.A.e.γ); “high” is here a

fuzzy set on [0,1]. “Basically the employment of fuzzy level sets for
purposes of clustering may be viewed as an application of a form of
contrast intensification.”

Recently, Ruspini (1977) has dealt with a new approach to the cluster
representation problem. A fuzzy partition is now viewed as a fuzzy set of
fuzzy clusters. Classically, given a crisp equivalence relation R on X × X
and denoting by R(x) the set {y [ X, µ

R
(x, y) = 1}, a nonfuzzy subset C

of X is said to be an R-cluster representation of X iff  x∈C
U R(x) = X.  (1)

If C contains no proper subset that is also an R-cluster representation of
X, C is said to be a minimal representation of X. When R is fuzzy and X is
finite, a fuzzy set C is said to be a fuzzy R-representation of X iff

x ∈ X
∑ µ

R
 (x, y)µ

c
(x) ù 1       ;y [ X,  (2)

provided that x ∈ X∑ µ
R
 (x, y) ù 1 ;y [ X. The problem of finding a fuzzy

minimal R-representation may be stated as: find a fuzzy R-representation
C* of X such that H(C*)  = inf H(C) where H is for instance the cardinal-
ity of C in the sense of II.1.D.a. In the conventional representation the set
of clusters is {R(x),x [ C*}— C* is a set of cluster centers. In the fuzzy
representation the set of clusters is a fuzzy set

µ
C∗ x( )/ µR x, y( ) / y

y  ∈ X
∑















x  ∈ X

∑ ,

using Zadeh’s notation of fuzzy sets. The membership functions of the
fuzzy clusters are µ

R
(x,⋅), their number is C*, i.e., no longer an integer.

µ
C*

(x) is the degree of eligibility of µ
R
(x,⋅) and is to be considered as the

membership function of a fuzzy cluster.
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N.B.: Equation (2) generalizes (1) in the sense of the bold union . (see
II.1.B.e.). When C is not fuzzy, but R is, (1) can be extended into

. R(x) = X
 
x [ C

i.e., min( x ∈ C∑ µ
R
 (x, y), 1) = 1; when C is fuzzy, this equation is obviously

extended into (2).

Lopez de Mantaras (1978) deals with the case when the data set is not
given at once, but the patterns arrive sequentially. The main features of his
approach are:

(1) relaxation of the orthogonality constraint that defines a fuzzy
partition because the patterns are noisy; thus, too noisy patterns
are allowed to have a very low degree of membership to each
cluster;

(2) it employs the concept of self-learning (see Lopez de Mantaras and
Aguilar-Martin, NF 1978); the number of clusters is not known a
priori.

C.   INFORMATION RETRIEVAL

An information retrieval system compares the specification of required
items with the description of stored items and retrieves or lists all the items
that match in some defined way that specification. An example of a fuzzy
system describing an information retrieval process can be found in Negoita
and Ralescu (1975, Chap. 4). We are concerned here with the clustering
aspect of the problem.

Fuzzy approaches to information retrieval have been initiated rather
early in the literature (Negoita, 1973a; Demant, 1971).

Let X be a set of documents. A fuzzy set on X is interpreted as a fuzzy
cluster of documents. Let Y be a set of descriptors y

k
, k = 1,n. A

document x [ X is described by the vector (y
l
(x), . . . ,y

n
(x)) where

;k, y
k
(x) [ {0,1}. The probability that the descriptor y

k
 is present in any

document of the cluster i is denoted p
ik
. The membership function of the

cluster i is µ
i 
such that (Negoita, 1973b)

µ
i
(x) = pik yk x( )

k=1

n

∑ / yk x( )
k=1

n

∑ .

A reasonable necessary condition for a clustering algorithm used for
structuring the storage of documents is that every document should be
assigned to at least one cluster. To take into account all the clusters, a
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document x is assigned to the cluster i as soon as

µ
i
(x) > min

j, k
 max

x ∈ X
 min (µ

j
(x), µ

k
(x)).

Negoita (1973a) introduced the degree of relevance of a descriptor y
k
 to

a document x as the truth value (belonging to [0, 1]) of the proposition “the
document i  has the descriptor y

k
.” Thus, there is a fuzzy relation R on

X × Y. It is supposed that ;x [ X,∃y
k
 [ Y such that µ

R
(x, y) > 0. The

fuzzy description of the document x is a fuzzy set D(x) such that
µ

D(x)
(y) = µ

R
(x, y). A fuzzy relation ρ expressing the similarity between

the documents can be induced on X × X (Negoita and Flondor, 1976) by

µρ(x, x′) = max
y ∈ Y

 min (µ
D(x)

(y), µ
D(x′)(y)).

Clusters of similar documents can thus be considered.
Let g be a fuzzy measure on Y expressing the relative importance of the

descriptors. A global evaluation δ (x) of a document x can be defined by
means of Sugeno’s integral:

δ(x) = )
Y

µ
D (x)

(y) ° g(⋅).

Such an evaluation may be helpful when searching for a document
(Negoita and Flondor, 1976). For let q be a request whose fuzzy descrip-
tion is D(q), the documents x that best match the request are such that a
distance between δ(x) and δ(q) is minimum.

A linguistic approach to the representation and processing of fuzzy
queries is described at length in Tahani (1977).

Remark The problem of organizing the set of descriptors by means of
fuzzy relations is considered by Reisinger (1974). The membership value of
the link between two descriptors y and y′ (i.e., the “association factor”) is
calculated from the numbers of documents in X that are partially charac-
terized by both y and y′, and by only one of them.

A similar approach is given by Radecki (1976) who uses the notion of
fuzzy level set (II.1.C.).
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Chapter 7
FUZZY DIAGNOSIS

In this brief chapter the problem of the determination of the internal
state of a system from a set of external observations is considered. States
may be thought of as possible causes (e.g., diseases) and observations as
effects (e.g., symptoms). In many practical situations the observations are
fuzzy because they are partially qualitative; moreover, the relationship
between causes and effects may be complex or ill known. The number of
works dealing with fuzzy diagnosis is still rather small compared with
decision-making and pattern classification using fuzzy sets. In Section A a
fuzzy extension of the well-known Bayesian inference model is presented.
Section B is devoted to the representation of causality by fuzzy relations.

A. DISCRIMINATION OF FUZZY STATES IN A PROBABILISTIC
ENVIRONMENT

In most decision-making problems of large-scale systems, states are
generally defined by fuzzy statements that roughly reflect a given situation.
Asai et al. (1977) have formulated a method for discriminating such fuzzy
states in probability space and have derived a diagnosis rule that mini-
mizes the average probability of discrimination error. Let S = (s

1
, . . . , s

n
)

be a set of nonfuzzy states; p(s
i
) denotes the a priori probability of being in

state s
i
. Let X be a set of possible observations. p(x | s

i
) is the probability of

observing x when the state is s
i
. Let F

1
 and F

2
 be two fuzzy states that
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realize a fuzzy partition of S, i.e., ;s [ S, µ
F1

s( ) + µ
F2

s( ) = 1.  Only two
fuzzy states are considered for convenience.

Generally, the a priori probabilities p(s
i
) are not known. They can be

obtained from fuzzy prior information which is described by a fuzzy
statement M. Only bounds on

P M( )  =  µM

i = 1

n

∑ si( ) p si( )

are available, say a
1
, and a

2
. The p (s

i
) are calculated using the principle of

maximum entropy, i.e., they are solutions of the problem

   maximize  –  p
i = 1

n

∑ si( )1n si( )

subject to  a
1
< P(M) < a

2
.

The probability of the fuzzy state F
k
 when x is observed is

P Fk x( )  =  
P x, Fk( )

P x( )
 =  

 µFk  
i = 1

n

∑ si( ) p x  si( ) p si( )
P x  F1( )  P F1( )  +  P x  F2( )  P F2( )

with

P x Fk( )  =  
P x, Fk( )
P Fk( )     and      P Fk( )  =   µF k

 
l = 1

n

∑ si( ) p si( ).

In these formulas p(s
i
), p(x | s

i
), m

F1
(S

i
), and m

F2
(S

i
) are assumed known for

all i = 1,n.
The discrimination of a fuzzy state can be performed using the Bayes

acceptance rule (extended to fuzzy states): F
1
 is chosen iff P(F

1
|s )

>P(F
2

| s) and conversely. This rule corresponds to the minimization of
the probability P

e
 of discrimination error. When the observation is made

of a finite sequence of independent elementary observations (x
1
, . . . , x

m
)

=x(m), Asai et al. (1977) give upper bounds for P
e
. They have pointed

out that when m → ` , P
e
 no longer converges to 0 in average value as in

the nonfuzzy case. This fact is interpreted as follows: when discriminating
fuzzy states, there is uncertainty in the meaning of the fuzzy states in
addition to probabilistic uncertainty.

Lastly, the authors provide a rule for deciding when to stop the observa-
tions. Let H denote the entropy; we have
H (F

1
,F

2
| x(m))

= – [P( F
1
| x(m))1n( P(F

1
| x(m))) + P( F

2
| x(m))1n(P(F

2
| x(m)))]
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and

H p x m( )( )  =  p si x m( )( )
i = 1

n

∑ 1n p si x m( )( )( ).
Asai et al. (1977) have proved that if

max(P(F
1
 | x(m)), P(F

2
 | x(m))) > max

i
p (s

i
|x (m)),

then H(F
1
, F

2
| x (m)) < H ( p | x (m)), which means that the probabilistic

uncertainty is greater than the uncertainty due to the fuzzy states. It is then
worth getting new information x

m + l
 before discriminating F

l
 and F

2
.

B.   REPRESENTATION OF CAUSALITY BY FUZZY RELATIONS

The use of fuzzy sets for medical diagnosis was first suggested by Zadeh
(1969).

An approach to the modeling of medical knowledge by fuzzy relations is
described by Sanchez (1977a). Let X be a set of symptoms, S a set of
diagnoses, and 3 a set of patients. Two fuzzy relations are assumed to be
given, namely Q on 3 3 X and T on 3 3 S. Q expresses the fuzzy
symptoms of the patients and R the fuzzy diagnoses given by a physician.
In order to represent the medical knowledge inferred from Q and T,
Sanchez proposes determining the greatest fuzzy relation R (in the sense of
the usual fuzzy set inclusion) on X 3 S such that the proposition
R→2  (Q→2 T) is true (where →2  is Brouwerian implication, see III.l.B.c).
This is equivalent to

;(x, s, p) [ X 3 S3 3,

y(R→2  (Q→2  T)) = m
R

(x, s) a (m
Q
 (p, x)a m

T 
(p, s)) =  1

where α is the operator introduced in II.1.G.a. Noting that for any
propositions A, B, and C, we have

υ (A →2  B) = 1  iff υ (A) < υ (B)
and

   υ (A→2 (B→2 C)) = υ ((A ` B)→2 C ),

(` denotes conjunction in the sense of III.1.B.b.a), we deduce

;(x, s, p) [ X 3 S3 3,   min(m
R

(x, s), m
Q

(p, x))< m
T

(p, s),
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i.e., Q + R # T. The greatest fuzzy relation R satisfying this inclusion is
R = Q – 1 a T (see II.3.E.a) which yields the medical knowledge associated
with Q and T. Given a patient p having a fuzzy symptom ̃x , a fuzzy set on
X, the automated fuzzy diagnosis will be

s̃  = x̃ + (Q– 1 a T).
When the diagnosis is not satisfactory, the medical knowledge (R) can be
improved by enlarging the set of patients diagnosed by a physician. Other
formulations of medical diagnosis models can be found in Sanchez
(1977b).

An alternative approach to diagnosis with fuzzy relations has been
proposed by Tsukamoto and Terano (1977). They have illustrated their
scheme of diagnosis on the detection of car troubles. S is now a set of
possible failures, and X is still the set of symptoms. Let R be a fuzzy
relation on S3 X that models the causal link between failures and
existence of symptoms; another fuzzy relation T on S3 X reflects the
causal link between failures and observed symptoms (T # R). Let s̃  be a
fuzzy failure and x̃  a fuzzy symptom. The causality between failure and
symptoms is expressed by the logical propositions

; x [ X,  P
1
(x): x̃ (x) ⇒ ('s [ S, (R(s, x) ` s̃ (s)))

; s [ S,   ; x [ X,   P
2
(s, x): s̃ (s) ⇒ x̃ (x)

where x̃ (s), s̃ (s), R(s, x) are predicates (such that

υ ( x̃ (x)) = µ x̃ (x),   υ ( s̃ (s)) = µ s̃ (s),   υ (R(s, x)) = µ
R
(s, x));

⇒ denotes implication in the sense of III.1.B.b.,β, ` conjunction in the
sense of III.1.B.b.α. P

1
(x) means that if a symptom x is observed, then at

least one failure among those that cause s has occurred. Consequently,
υ (P

1
(x)) = 1. P

2
(s, x) expresses that if a failure s occurs, then a symptom x

is observed. The truth value of P
2
(s, x) is not necessarily 1, but greater than

or equal to µ
T
(s, x). The fuzzy propositions P

1
(x) and P

2
(s, x) translate into

; x [ X,  P
1
(x): 0 < µ x̃ (x) < max min(µ s̃ (s), µ

R
(s, x)),

s [ S

; s[ S,   ; x [ X    P
2
(s, x): 0 < µ s̃ (s) < min(1, 1 – µ

T
(s, x) + µ x̃ (x)).

From knowledge of ̃x , R, and T a fuzzy failure s̃  can be deduced by
solving the system

x̃  # s̃  + R,    ; s [ S,    µ s̃
(s) < min(1, 1 – µ

T
(s, x) + µ x̃ (x)).

x [ X

In II.3.E.c a method for obtaining the solutions of the equation x̃ = s̃ * + R
is described. These solutions, when they exist, are constructed from a set of
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Φ-fuzzy sets {Φ
i
, i = 1,r) by choosing the value of µ s̃∗ (s) in µΦi (s) = [α

i
(s),

β(s)] provided that the same Φ
i
 is used to characterize s̃ *. Noting that

; s̃ $ s̃ * ,    s̃ + R $ s̃ *  + R = x̃ ,

the exact intervals for choosing µ s̃ (s) such that x̃ # s̃  + R are [α
i
(s), 1].

These intervals are then reduced by applying condition P
2
(s, x).

Remark  An artificial intelligence approach to diagnosis problems using
fuzzy concepts has been outlined by Wechsler (1976). It is a medical expert
system with the characteristics:

“the medical knowledge is represented procedurally.” (i.e., contained in
programs rather than in declarative structures);

it uses procedures which deal explicitly with statistically dependent
symptoms through use of logical combination;

new information is added “via change or extension of procedure rather
than through building a large data base to improve the statistical decision
rules”;

“inexact concepts (multi-valued) are allowed so as to deal with degrees
of a symptom”;

“the interpretation of inexactness is allowed to vary with context.”

This approach is related to that developed by Shortlife and Buchanan
(NF 1975), i.e., the MYCIN system. The approximate reasoning used by
MYCIN is based on measures of belief and disbelief (different from
Shafer’s (NF 1976) belief functions) rather than fuzzy set theory. Another
related approach is that of Chilausky et al. (1976).
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Chapter 8
FUZZY SETS IN THE
IDENTIFICATION OF
STRUCTURES

This chapter presents a few works that share the purpose of structural
identification of systems, while based on fuzzy set theory. However, they
are quite different in other respects. In the first section the construction of
hierarchical models of organizations through fuzzy responses of a panel is
considered. A learning method for the synthesis of a single-input, single-
output system from knowledge of possible subsystems is then described.
Lastly, first attempts at fuzzy grammar inference are reported.

A.   FUZZY STRUCTURAL MODELING

Let S be a finite set of objects s
i
, i = 1, n. These objects can be viewed as

parts of a large system. The problem is to order S, i.e., to define how each
part is related to others. The determination of the hierarchy underlying S
is achieved by asking a panel of experts to supply the entries of an n by n
relation matrix R, called the reachability matrix.

However, the process of collecting such data can become very long when
n is a large number. To circumvent this difficulty, and also to avoid
inconsistency in the data, Warfield (NF 1974a, b), has developed a
computer-aided approach to the collection of binary entries of matrices
describing the hierarchical structure of large systems. The main assump-
tion is the transitivity of the relation obtained, which allows computation
of entries from knowledge of others.
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Warfield’s method has been extended by Ragade (1976) to the case
when the panel’s answers are graded, i.e., R is a fuzzy reflexive, max–min
transitive relation. m

R
(s

i
, s

j
) is the grade of dominance of s

j
 over s

j
.

In a first phase S is partitioned in (nonfuzzy) clusters called subsystems,
whose individual reachability matrix is known. In the second phase inter-
connection matrices between subsystems are filled.

First phase   The choice of an element in S, say s, is made. The panel
must answer questions about the relations between s and the other objects.
S – {s} is then divided into four sets:

the lift set L(s) = {s
i
 | m

R
(s, s

i
) > 0};

the feedback set F(s) = {s
i
 [ L(s) | m

R
(s

i
, s) > 0};

the drop set D(s) = { s
i
 | m

R
(s, s

i
) = 0, m

R
(s

i
, s) > 0};

the vacant set V(s) = {s
i
 | m

R
(s, s

i
) = m

R
(s

i
, s) = 0} .

The matrix is then arranged in block-triangular form:

r
L – F

, r
F
, K

F
, K

D
 are supplied by the panel. Some blocks can be calculated

by transitivity; we have, for instance,

  
∀ si ∈F s( ),     ∀ sj ∈V s( ),     µ R s, s j( ) = 0 > min µ R s, si( ), µ R si , sj( )( )

and

  
µR sj , s( ) = 0 > min µR sj , si( ), µR si , s( )( );

hence, R
F, V

 = 0 = R
V, F

. We also have

  
∀ si ∈D s( ),     ∀ sj ∈L s( ),     µ R si , s j( ) > min µ R si , s( ), µ R s, s j( )( ) > 0.

Note that what is actually obtained are nonnull bounds on the m
R
(s

i
, s

j
) in

R
D, L

, R
V
, R

D, V
, and R

D
 This process is iterated by choosing a new

element in L(s) – F(s) and partitioning this set as above, and so on, until
drop sets, vacant sets, and nonfeedback parts of lift sets are singletons.
D(s) and V(s) are similarly reduced.
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Second phase   Some lower off-diagonal blocks remain unknown, i.e.,
interconnection matrices. They are determined without extra information
as follows. Let

RCC =
RAA 0

RAB RBB







where R
AB

 is unknown. Using the transitivity of R
CC

, i.e. , R
CC

+ R
CC

 =
R

CC
, R

AB
 must satisfy

R
AB

 = (R
AB

+ R
AA

) < (R
AB

  R
BB

);

i.e., if R
AA

 is p by p, and R
BB

 q by q, and denoting by r
ij
 the entries of R

CC
,

  

∀ i > p,     ∀ j < p,     rij = max max
k < p

min rik , rkj( ), max
k > p

rik , rkj( )





                                     = max
k

min rik , rkj( ).
It is easy to see that by renaming the r

ij
, the above equation can be

formally written z = z + T where z is a vector with pq components which
are the r

ij
, and T is a pq by pq matrix made up of R

AA
, R

BB
, and zeros. z is

thus an eigenfuzzy set of T and can be calculated as in II.3.E.d. Another
solution method is given in Ragade (1976).

The assumption of transitivity can be relaxed. Tazaki and Amagasa
(1977a) define the semitransitivity of R by

  
∀ i,   ∀ j,   ∀ k,   if mij = max

k
min µ R si , sk( ), µ R sk , s j( )( ) > θ

then m
R
(s

i
, s

j
) > m

ij
 where u []0, 1] is a given threshold. The authors

describe a procedure for constructing a semitransitive matrix (called a
semireachability matrix) and deduce the structure of S.

When R is transitive and reflexive, a partial order on the elements of S is
easily obtained as shown in II.3.D.c. When it is only semitransitive, a set of
disjoint partial orders can still be obtained; this set depends on the value
of u (see Tazaki and Amagasa, 1977a).

B.   HEURISTIC STRUCTURE SYNTHESIS

A system synthesis problem is now defined, and a heuristic fuzzy
approach to this problem is proposed, following Tazaki and Amagasa
(1977b). Let S be a single-input, single-output system made of n subsys-
tems S

1
, . . . , S

n
, as in Fig. 1.

Each subsystem i  ≠ 1 has an input x
i
 that is one of the outputs y

j
,

j = 1, n – 1, say x
i
 = y

j(i)
, j(i) < n. The output y

i
, i = 1, n, depends on the
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Figure 1

input x
i
 and a local decision d

i
:

yi = f i xi , di( ).
No subsystem is connected to the input subsystem S

1
; the output of S

n
 is

not connected to any subsystem’s input. n is assumed known and is the
maximal number of connected subsystems in S. A performance criterion
for S is selected of the form

  
7 x, y, d( ) = 7 i xi , yi , di( )

i = 1

n

∑
where 7

i
 is the objective function of the ith subsystem. The synthesis

problem is stated as follows: find the admissible connections and the
decisions that minimize 7 under the constraints:

(1) y
i
= f

i
(x

i
, d

i
), i = 1, n;

(2) 'j(i) < n, x
i
= y

j(i)
, i = 2,n.

The heuristic algorithm solving this problem proceeds in four steps:
Step 1   Optimize each subsystem, for a nominal admissible input x

i
,

while relaxing (2), and determine the output and decision vectors in each
subsystem.

Step 2   Calculate the matrix of a fuzzy relation R that expresses the
discrepancy between the outputs and the inputs to which they are con-
nected. Each term r

ij
 is of the form

  
rij = wm µ1 xi , y j( ) + 1 − wm( )µ 2 7 i , 7 j( ),      i = 1, n,    j = 1, n,

where (see Tazaki and Amagasa, 1977b) m indicates that m – 1 iterations
have been run. m1(x

i
, y

j
) decreases with |x

i
– y

j
| and is 1 for x

i
= y

j
. It

evaluates the suitability of coupling the output of S
j
 with the input of S

i
.

m2(7
i
,  7

j
) decreases with 7

i
 + 7

j
 and valuates how S

i
 and S

j
 are optimized.

w
m
 [ [0, 1] is a weight calculated at each iteration by a reinforcement rule

(see 5.A):

  
wm = αm wm − 1 + 1 − αm( )λ     with   αm = 1 −

7 m − 7m

7m

    ∈]0,1[( )
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7
m
 is the value of 7 at the mth iteration and   7m

 the average value of 7
from the beginning of the run;

    

λ = 1    iff     7 m < 7m ,       hence     wm > wm − 1;

λ = 0   iff     7 m > 7m ;       hence     wm < wm − 1.

And m2 is given a priority over m1.
Step 3   The set of admissible subsystems is a fuzzy set on S, say A

m
 at

iteration m. A
0
 is given a priori. The new admissible fuzzy set is

A
m
 = A

m – 1
 + R.

The new structure of S is determined by two rules:

connect the input of S
i
 to the output of S

j
 such that

µ Am
Si( ) = min µ Am − 1

Sj( ), r ji( );
when j is not unique, k is chosen such that

max µ Am − 1
Sk( ), rki( ) = max

j
max µ Am − 1

Sj( ), rji( ).
Conditions on R and A

0
 are given in Tazaki and Amagasa (1977b) to make

sure of the uniqueness of k.
Step 4   According to the structure determined in step 3, adjust the

inputs of the connected subsystems; then return to step 1. The modifica-
tion of the inputs of the connected subsystems is carried out through a
reinforcement algorithm (see Tazaki and Amagasa, 1979). The inputs of
the nonconnected subsystems remain unchanged. The algorithm stops
when step 1 gives the same results as the preceding iteration.

Tazaki and Amagasa (1977b) claim that their method is more conve-
nient than combinatorial enumerative or variational approaches from the
point of view of computation time, and usually yields the optimal solution
for small-sized systems.

Remark:   A method for the structural decomposition of large dynamic
systems is proposed by Dufour et al. (1976). It is based on the derivation of
a partition-tree (see II.3.C.b.) from a similarity relation on a set of
characteristic parameters. This relation is built from observations.

C.   FUZZY GRAMMAR INFERENCE

The problem of grammatical inference is very important in syntactic
pattern recognition. It consists in finding a formal grammar that generates
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a language containing a prescribed finite set of strings, and sometimes not
containing another finite set of strings; however, the latter constraint is not
considered in the following. Grammatical inference methods have been
developed for ordinary regular and context free grammars, tree grammars,
and unambiguous stochastic grammars. (See, e.g., Fu and Booth, NF 1975,
for a survey.)

Inference methods for deriving fuzzy grammars would enhance the
applicability of fuzzy language theory to syntactic pattern recognition
problems. To date only two approaches exist in the literature of fuzzy sets,
a reinforcement algorithm and an enumeration method.

a.   Learning of Fuzzy Formal Language  (Tamura and Tanaka, 1973)

Let G
1
= (V

N
, V

T
, P

1
, S) be a fuzzy grammar where V

N
 is a set of

nonterminals, V
T
 a set of terminals, P

1
 a set of valued productions, and S

is the starting symbol. V
N
, V

T
, and P

1
 are chosen beforehand to cover a

sufficient range. The set R of productions on which P
1
 is a fuzzy set may

contain improper production rules.
At time n the fuzzy grammar is G

n
= (V

N
, V

T
, P

n
, S) where

Pn = µn u → υ( ) u → υ( ),     u, υ ∈V* = VN ∪ VT
*( ).

R
∑

For the purpose of learning, a finite set of strings K
n
= { xni

| i = 1, N
n
} is

given. Each string of K
n
 is parsed by G

n
. To make the parsing possible, G

1

is assumed recursive. Let Q( xni
) be the subset of productions in R that can

be used to generate xni
. The subset of productions that can be used to

generate the strings in K
n
 is thus

  Q Kn( ) = Q xni( ) ⊆ R.
i = 1, Nn

U
The learning process consists in reinforcing the production in Q(K

n
) and

weakening the others. More precisely, P
n + 1

 is defined by

µn + 1 u → υ( ) = αµn u → υ( ) + 1 − α( )θn u → υ( ),      α ∈] 0,1[

where u
n
 is the characteristic function of Q(K

n
).

N.B.:   When G
n
 is ambiguous, one may wish to reinforce the produc-

tions of only one of the derivation chains that yield each xni
. The choice is

made by an external supervisor. Denoting

    
L λ Gn( ) = x ∈V* | µGn

x( ) > λ{ }     ∀λ ∈ 0,1[ ]
and by L(A) the nonfuzzy language generated by (V

N
, B

T
, A, S) with

A # R, it can be proved that (see Tamura and Tanaka, 1973) if ;n [ N –
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{0} , K
n
 = K, then ;l [ ]0, 1[, 'N(l) such that ;n > N(l), L

l
(G

n
)

= L(Q(K)).
This result means that the only productions that remain valid are those

in Q(K), when K is always used as a training set. However, generally
speaking, it is not clear what training set is adequate to intensify only a
specified set of productions. Note that since u

n
 is a characteristic function,

the result is a nonfuzzy grammar, having Q(K) as a production set.

b.   A Combinatorial Approach  (Lakshmivarahan and Rajasethupathy,
1978)

A slightly different kind of grammatical inference is now considered. Let
Γ = (V

N
, V

T
, R, S) be a nonfuzzy context-free grammar, and L(Γ) the

nonfuzzy language generated by Γ. Let E = µ i xii∑  be a given finite-
support fuzzy set of V*

T
. The problem is to find a fuzzy set P of R, i.e., a

fuzzy grammar G = (V
N
, V

T
, P, S) such that E # L(G).

Let k = | R |. There are at most k different valuations for the produc-
tions, say r

1
, r

2
, . . . , r

k
. For any subset X = { Pi1

, . . . , Pir
} of R, where Pij

denotes the name of a production, let us define

  

C X( ) = min ρi1
, . . . , ρir( )

EX = x ∈L Γ( ) | S ⇒ x
X{ };

which is the set of strings derived by applying at least once each of the
productions of X. Note that when Γ is not ambiguous, ∀ x1, x2 ∈Ex ,
m

G
(x

1
) = m

G
(x

2
) = C(X).

L(Γ) is now decomposed into equivalence classes.
When Γ is not ambiguous, each string of L(Γ) belongs to only one set E

X

since x can be derived only by one chain. The equivalence is thus defined
by ;x, y [ L(Γ), x z y iff X(x) = X(y) where X(x) and X(y) denote the
set of productions necessary to derive x and y, respectively. The equiva-
lence class of x is E

X(x)
.

When Γ is ambiguous a string x [ L(Γ) may belong to several E
X
.

Hencez is no longer an equivalence relation.
In the nonambiguous case the inference problem is solved as follows:

find all the subsets Xi of productions of Γ that give birth to complete
derivation chains   S → α1 →L→ αn → x;

let M be the number of the Xi;
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choose in each of the subsets E
Xi , one string xi whose length is |Xi |;

we thus obtain M strings to which are assigned weights m
i
, i = 1, M

supposedly consistent, i.e., the system of nonlinear equations ;xi, C(Xi)
= m

i
 has a solution;

the valuations of the productions are the r
j
, the solutions of the above

system; generally, r
j
 is not unique.

N.B.:   1.   The sample set of strings E must have at most M elements to
use the above algorithm. This algorithm indicates what kind of sample sets
are worth considering.

2.  Some hints for dealing with the ambiguous case are proposed in
Lakshmivarahan and Rajasethupathy (1978).
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Chapter 9
FUZZY GAMES

Like most system-oriented theories, game theory did not escape fuzzifi-
cation, although the number of attempts is still rather small. Fuzzy games
are intended to model conflict situations with imprecise information.
Payoffs, strategies, coalitions, etc. may be fuzzy.

For instance, we can consider a two-person zero-sum game with a fuzzy
payoff. Let S

1
 and S

2
 be the sets (assumed finite for simplicity) of the

strategies of player I and of player II, respectively. Let P̃(s1,  s2 ),  a fuzzy set
on R, denote the fuzzy payoff to player I when he chooses s

1
 in S

1
 and

player II chooses s
2
 in S

2
. Player I wishes to maximize ̃P(s1,  s2 )  and player

II wishes to maximize − P̃(s1,  s2 ).  Irrespective of what player II does,
player I may secure for himself at least

max  min  P̃(s1,  s2 ) = ṽ l
.

s1[ S1    s2[ S2

Similarly, player II may secure for himself at least

max  min  P̃(s1,  s2 ) = ṽ2
.

s
2
[ S

2    
s

1
[ S

1

P̃(s1,  s2 ),    ̃n1, and ν̃2  may be viewed as possibility distributions on the actual
value of the payoff. hgt(  ̃n1 >   ̃n2 ) values the possibility of the existence of a
saddle point. Note that, for instance, the set of secure strategies s

1
 of player

I such that min s
2
[ S

2
P̃(s1,  s2 ) =   ̃n1 is a fuzzy set when the payoff function is

fuzzy (see II.4.B.c).

In the remainder of this very short chapter a survey of the current
literature is provided.
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Orlovsky (1977) has considered the following two-person game. The sets
of the possible (feasible) strategies of player I and player II are two fuzzy
sets A

1
 and A

2
 on S

1
 and S

2
, respectively. But the two payoff functions P

1

(for player I) and P
2
 (for player II) from S

1
 3 S

2
 to R are assumed

nonfuzzy. Each player is here supposed to know the strategy chosen by the
other player. Thus, player I maximizes his payoff P

1
(S

1
, S

2
) over his fuzzy

strategy set A
1
 for a given s

2.
. The fuzzy choice of player I is given by the

membership function (see II.4.B.b)

               
    

µ1(s1 ,  s2 ) =
µ A1

(s1 )       if      s1[ N λ ,  s2( ),
λ >0
U   

0                 otherwise,







where

  
N(λ,  s2 ) = s1{ [ S1 ,  P1(s1 ,  s2 ) =   sup

s' [ D λ
1

 P1(s'1 ,  s2 )






,

      
Dl

1 = s1, s1 [ S
1
,  µ

A
1
(s1) > l

.

The fuzzy choice of player II m
II
(s

1
, s

2
) is symmetrically defined. The fuzzy

equilibrium solution is then introduced as a fuzzy set on S
1
 3 S

2
 whose

membership function is

m
e
(s

l
, s

2
) = min(m

I
(s

l
, s

2
), m

II
(s

l
, s

2
)

The fuzzy payoff P̃I  of player I at the fuzzy equilibrium is (see II.4.B.b.β)

     µ
P̃I

z( )  =
s1, s2( ) ∈P

1
−1 z( )

sup  µe s1 ,  s2( )

where P1
−1 (z) ={( s

1
, s

2
) [ S

1
 3 S

2
, P

1
(s

1
, s

2
) = z} . P̃II  is calculated simi

larly.
Ragade (1976) deals with two-person games where the preferences of the

players are fuzzy. Let S
i
 be the strategy set (nonfuzzily restricted) of player

i, i = 1, 2. Let a = S
1
 3 S

2
. For each player, M

i
 denotes a reflexive fuzzy

preference relation on a 3 a 
  

µ M1
[(s1 ,  s2 ),  (s'1 ,  s'2 )] [ [0,  1],  i =  1, 2( ). An ele-

ment (s
1
, s

2
)[a is called an outcome. An outcome (s*1 ,  s*2 ) is said to be

l
1
-rational for player 1 if

;s
1
[ S

1
,  µ M 1

[(s1 ,  s*2 ),  (s *1 ,  s *2 )] > l
1
.

The set of all l
1
-rational outcomes is denoted R

1,l1
. R

2, l2
 is similarly

defined. Since rational outcomes for both players correspond to equilibria,
R

1, l1
> R

2, l2
 may be viewed as the set of outcomes in l

1
, l

2
-equilibria.

Butnariu (1978) questions the usual safest (worst-case) strategy rule of
2-person games. For a given player, the set of feasible strategies is fuzzy. It
is obtained from the composition of a fuzzy relation on S

1
 3 S

2
 (expressing
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the preferences of the player conditioned by the other player’s strategies)
and the fuzzy set representing the estimation of the behavior of the other
player.

Blaquière (1976), in the framework of n-person dynamic games with
coalition, has introduced the notion of fuzzy optimality with respect to a
set of players. The concepts of diplomacy and fuzzy diplomacy (in order to
take into account the fact that “any subset of the set of players can try to
improve its payoff by switching from one set of coalitions to another as
time evolves”) are also presented in the same reference.

Aubin (1974a, b, 1976) has introduced the concept of a fuzzy core in
game theory. Let us consider an n-person game. Let N be the set of players
and a be a family of coalitions A (i.e., of subsets of N). S(A) is the set of
multistrategies of A. Let 3

A
 = {PA

i}i∈A  be the set of the real-valued loss
functions of players i behaving as members of A. Let s̃ [ S(N) be a
multistrategy of the whole set of players. It is a weak equilibrium if

'l [ Mn 
        
= l[Rn*

,∀ i[N,li > 0 and Σli

i=1

n

= 1


such that, for all coalitions A,

      
Σl i

i [ A
P i

N (s ) < inf
s

A
[S(A)

  Σl i

i [ A
PA

i (sa ).

It is an equilibrium if 'l [ Mn = {l [ Mn, li > 0,;i [ N} . The core
C({ S(A),3

A
}

A[a
) is the set of multistrategies s [ S(N) that are not

rejected by any coalition A[a. By definition, a coalition A rejects
s[ S(N) if it can find S

A
[ S(A) yielding to each player i participating in

A a loss PA
i (sA)  strictly smaller than the loss PN

i (s) . Note that any
equilibrium belongs to the core; the converse is false.

In order to “shrink’’ the core by allowing more coalitions to form and
reject strategies Aubin (1976) embeds the set a of coalitions A into the set
7 of fuzzy coalitions (fuzzy subsets of N). The game becomes “a fuzzy
game.” A fuzzy core can be defined (see Aubin, 1976). It is possible to
show that “any equilibrium belongs to the fuzzy core and that the fuzzy
core is contained in the set of weak equilibria” (see Aubin, 1976).

Another game situation involving coalitions and fuzzy sets in an eco-
nomics context is considered in Féron (1976).
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Chapter 10
FUZZY SETS
AND CATASTROPHES

Zadeh’s fuzzy set theory and catastrophe theory (Thom, NF 1973, NF
1974) appeared almost at the same time. However, they have been initially
developed in very different frameworks. Each theory has encountered not
only enthusiasm and approbation, but also criticism and even derision.
The applications of both theories are concerned with system theory:
approximate descriptions of complex processes for the former and models
of discontinuous changes in the evolution of systems for the latter. It
would be interesting to know whether both theories may be used concur-
rently. One may also be tempted to fuzzify catastrophe theory, but it is not
clear that this would be fruitful. In fact, very few works dealing with these
questions have been published to date. Thus, this chapter is somewhat
different from the others in Part IV. No definition or result is provided.
We just intend here to give some hints.

In order to have in mind the basic vocabulary, we begin with a brief
description of one of the most widely used elementary catastrophes, the
cusp (also called the Riemann-Hugoniot catastrophe). A potentiallike
function

V(x; p, q) = 4
1 x4 + 

2
1qx2 +px

is supposed to be minimized as the system evolves, i.e.,

dx

dt
= − ∂ V

∂ x
= − x3 + qx+ p( ).

The set of equilibrium points x3 + qx + p = 0 is the manifold. x is referred
to as the state variable and p and q as the parameters (considered as
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Figure 1

“slow” variables, while x is a “fast” one). The manifold and the set of
bifurcation (projection of the folds of the manifold) 4q3 + 27p2 = 0 are
pictured in Fig. 1. There are two attractors (which correspond to minima
of V) A

1
 (x > 0, limited by the edge OS) and A

2
(x < 0, limited by the

edge OT). If p goes from p
1
 to p

2
, the state trajectory follows the manifold

smoothly until it reaches the edge OS of A
1
, then there is a catastrophic

jump (i.e., a discontinuity in the behavior of the system) to the lower
attractor A

2
 before continuing to N. But a path with fixed positive q avoids

the fast jump. A presentation of the other types of elementary catastrophes
(for other V) can be found in Thom (NF 1974).

In practical situations we never have to know explicitly what V is or
what it represents; we need principally to know the type of the catastrophe
(for instance, a cusp catastrophe), i.e., a qualitative description of the
phenomenon to be modeled. The trajectories will then remain in a neigh-
borhood of the theoretical manifold rather than on it. (See, e.g., Dixon, NF
1977.) Thus, we may be led to consider “fuzzy manifolds”—for instance,
“fuzzy cusps” [as Kokawa et al. (1975, 1977) for modeling of the human
concept-formational process: jump in the degree of confidence, in people’s
minds] with “fuzzy attractors.” Besides, on ordinary manifolds boundaries
between various attractors may be fuzzy.

Catastrophe theory may be very useful for modeling systems where
humanistic components play an important role (for instance, the behavior
of drivers in a traffic flow as modeled by Furutani (NF 1976a, b, NF 1977).
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As pointed out by Flondor (1977), a classical notion of fuzzy set theory
such as preference may be viewed as “a moment in the fight between
different attractors.” A different way of connecting catastrophe theory and
fuzzy sets lies in the introduction of “catastrophic” membership functions
(Zwick, et al., 1978).

N.B.:  Kitagawa (1975) has proposed using fuzzy topology as a basis
for the introduction of fuzziness in catastrophe theory.
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Part V
A SURVEY OF
POTENTIAL APPLICATIONS

The previous parts have developed at length the mathematics of fuzzy
sets and presented various fuzzy approaches to system-oriented problems.
Indeed, this is the main purpose of this book. Nevertheless, a review of the
present fields of application is now provided in order to give examples of
works where fuzzy concepts have been used.

Although some applications are actually based on real world data
experiments, many others are not; and very often comparison with other
techniques has not been made. Fuzzy set theory seems potentially promis-
ing; but, because of its novelty, the success of its applications is not
completely established yet.

So far, fuzzy set theory seems to have been applied mainly to scientific
areas where man is somewhat involved. However, there are some notice-
able exceptions: the detection of hazards in switching circuits (Hughes and
Kandel, Reference from III.1), functional approximation (Pavlidis and
Chang, 1977), and quantum mechanics. Fuzzy logic for quantum mechan-
ics is discussed by Almog (1978a,b) and Giles (1974), while Prugove˘cki
(1973, 1974, 1975, 1976a,b, 1977) has introduced the notion of fuzzy events
in the theory of measurement of observables. See also Ali and Doebner
(1976, 1977).

Apart from these exceptions the applications concern the following
fields: artificial intelligence and robotics, image processing, speech recogni-
tion, biological and medical sciences, control, applied operations research,
economics and geography, sociology, psychology, linguistics, semiotics,
and some more-restricted topics.
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A. ARTIFICIAL INTELLIGENCE AND ROBOTICS

Since “Artificial Intelligence is the study of ideas which enable comput-
ers to do the things that make people seem intelligent” (Winston, NF 1977)
and since, according to Zadeh (Reference from III.3, 1973), “The key
elements in human thinking are not numbers but labels of fuzzy sets,” the
interaction between artificial intelligence and fuzzy set theory seems quite
natural. Paradoxically, fuzzy artificial intelligence has not many proselytes
yet. Some rationale and motivations may be found in Uhr (1975), Goguen
(1975), and Hanakata (1974). Using fuzzy concepts, Goguen (1975) hopes
to construct robust systems, i.e., systems “able to respond without program
modification to slightly perturbed, or to somewhat inexactly specified
situations.” As a tool for modeling natural language (see IV.2.B), fuzzy set
theory may be useful in man-machine communication. The problem of
guiding a robot using fuzzy instructions has been considered by Gershman
(1976) and Uragami et al. (1976). A system able to “understand” sentences
that fuzzily designate objects has been developed by Shaket (1976). Rhodes
and Klinger (1977a,b) have implemented an interactive flexible language
(modeling hedges, as in fuzzy set theory—see IV.2.B.b) to modify graphic
facial images. Schek (1977) has proposed an interactive robust system that
is able to recognize slightly misspelled keywords, but the use of fuzzy
concepts is limited to the idea of similarity. More theoretical is PRUF
(Zadeh, 1977), which is a broad attempt to model semantic aspects of
natural languages. Quite different, although related to robotics, is the work
by Saridis and Stephanou (1977a, b; Stephanou and Saridis, 1976) where
fuzzy automata and fuzzy grammars are employed for coordination and
task organization in the hierarchical control of prosthetic devices.

N.B.:  1.  For the application of fuzzy sets to computer science lan-
guages, see IV.2.A.

2.  Becker (1973) seems to be the first to apply fuzzy sets to computer-
aided design.

B.  IMAGE PROCESSING AND SPEECH RECOGNITION

Works in image processing using fuzzy sets are rather scarce. A fuzzy
relaxation approach to scene labeling can be found in Rosenfeld et al.
(1976). The problem is to identify objects in a scene by using relationships
among these objects to reduce or eliminate ambiguity. Nakagawa and
Rosenfeld (1978) use local max and min operations for noise removal on
gray-scale pictures. Jain and Nagel (1977) detect moving objects in a
sequence of images by means of heuristic rules involving fuzzy texture
indices on the level of gray of the pixels. However, the use of fuzzy set
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theory is only a marginal aspect of these works. Lastly, a computer aided
system for art-oriented fuzzy image generation is described by Makaro-
vitsch (1976, 1977).

The first attempt to apply fuzzy set theory to speech recognition seems
to be that of Brémont (1975); see also Brémont and Lamotte (1974), Mas
and Lamotte (1976). Speech understanding systems based on fuzzy rela-
tions were also proposed by De Mori and Torasso (1976) for lexical
classification and by Coppo and Saitta (1976) for semantic analysis of
sentences. Another problem (vowel and speaker recognition) is considered
in Pal and Majumber (1977, 1978a, b), Pal et al. (1978).

C. BIOLOGICAL AND MEDICAL SCIENCES

The possibility of applying fuzzy set theory to biological and medical
sciences was first discussed by Zadeh (Reference from IV.7). Fuzzy cluster-
ing algorithms have been used in the classification of EEG patterns (Adey,
1972; Larsen et al., 1972), of ECG patterns (Albin, 1975), of hypertension
(Fordon and Fu, 1976), of abdominal diseases (Bezdek and Castelaz,
Reference from IV.6), of chromosomes (Lee, 1975), and of leukocytes (E.
T. Lee, Reference from IV.6, 1973). Models of neurons based on fuzzy
automata are described in Lee and Lee (1974) and Butnariu (1977).
Sanchez (References from II.3, 1977a, c) has studied the representation of
medical knowledge by means of fuzzy relations (see IV.7.B) for the
purpose of automated diagnosis. An application to diagnosis in thyroid
pathology can be found in Sanchez and Sambuc (Reference from II.1).
Wechsler (Reference from IV.2) has described a medical expert system
based on fuzzy concepts. Lastly, Malvache and Vidal (1974) have devel-
oped a fuzzy model of visual perception.

D. CONTROL

Applications of fuzzy sets to the linguistic control of mechanical systems
are rather numerous. The reader is referred to the corresponding chapter
(IV.4).

E.  APPLIED OPERATIONS RESEARCH

Many case studies in operations research have been realized using fuzzy
approaches. The distribution process of the customers of a given service
within a whole system of service centers has been studied by Carlucci and
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Donati (1977); a fuzzy mathematical model is proposed to predict this
distribution. A methodology based on fuzzy sets for transportation net-
work planning has been applied to the design of a bus network in a town
(Dubois, 1977, 1978); more specifically, fuzzy sets are used in forecasting
users’ trips; users are assigned to paths calculated by means of a fuzzy
Floyd’s algorithm; the networks are evaluated through fuzzy criteria aggre-
gation. A problem of optimal assignment of employees to work places,
where data and constraints are verbally defined, has been studied by
Kacprzyk (1976). A fuzzy logic controller of traffic in a single intersection
of two one-way streets has been implemented by Pappis and Mamdani
(1977). Prade (1977, 1979) deals with a real scheduling problem where the
duration of the tasks and the availability of resources are incompletely
specified—a fuzzy PERT method and other fuzzy tools are used. Sommer
and Pollatschek (1976) have applied fuzzy linear programming to an air
pollution regulation problem. Numerous practical production management
problems with fuzzy features are described in Pun (1977). Ben Salem
(1976) has developed a fuzzy multicriteria automatic decision-making
procedure to determine the sequencing of operations accomplished by a
machine tool. A. Jones (1974) models a computerized education system by
specifying fuzzy relations among sets of media, objectives, and teaching
modes. Other references can be found in the appended bibliography.

F.   ECONOMICS AND GEOGRAPHY

Blin et al, (1973) and Hatten et al. (Reference from IV.3) have ap-
proached the problem of consumer choice in microeconomics using fuzzy
relation or fuzzy automata. On a mathematical level S. S. L. Chang
(Reference from III.2) has applied fuzzy set theory to economic modeling,
economic forecasting, and economic policy. On a philosophical level
rationales and discussions in favor of fuzzy approaches to economics and
behavioral geography can be found in Ponsard (1975a) and Gale (1972),
respectively. Ponsard (1977a, b) introduces F-fuzzy relations in central
place theory in order to explain the hierarchical organization of an
economic area. Deloche (1975) has proposed a taxonomic method based
on fuzzy relations to determine boundaries of economic subregions. Fus-
tier (1975) models the attractiveness of shopping centers, using the notion
of fuzzy economical subzones.

G.   SOCIOLOGY

Zadeh (1973) has suggested modeling human behavior (individual or
group behavior) as a fuzzy system. It is assumed that basic system-
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theoretic concepts such as control, reinforcement, feedback, goal, con-
straints decisions, strategies, adaptation, and environment remain central
to the discussion of human behavior. A similar attempt is made in
Kaufmann (1977). Using verbal models, Wenstøp (Reference from IV.2,
1976a) is able to take into account human factors in the dynamic represen-
tation of organizations. Dimitrov (1977), Dimitrov and Cuntchev (1977)
model the understanding of fuzzy imperatives by individuals or groups.

H. PSYCHOLOGY

Experimental verifications of the psycholinguistic reality of fuzzy sets
and their operators are reported at length in Kochen (1975), Kochen and
Badre (Reference from IV.1), Hersh and Caramazza (Reference from
IV.1), Dreyfuss-Raimi et al. (1975), Oden (Reference from IV.1, 1977a,b),
Oden and Anderson (1974), and MacVicar-Whelan (Reference from IV.1,
1978). An experimental study has been carried out by Kokawa et al.
(1975a, b, 1977a, b). It deals mainly with memorizing, forgetting, and
inference processes and with the effect of hints on subjective decisions.

I. LINGUISTICS

Flou sets were initiated by Gentilhomme (1968) in the framework of
linguistics. Since then, other works have been published in fuzzy linguis-
tics, as shown in the appended bibliography. For instance, Rieger (1974,
1976) has proposed a fuzzy-set approach to the textual analysis of eigh-
teenth century German student lyric poetry.

Very different, although related, is the vast attempt, carried out by L. A.
Zadeh, to model semantic aspects of natural language. His theory has been
presented at length in III.1.E and IV.2.B. Lakoff’s (1973) paper is a
linguist’s commentary on Zadeh’s ideas about modeling hedges.

J. SEMIOTICS

Among the very few works that use fuzzy concepts in semiotics are those
of Vaina. In her thesis (Vaina, 1976) a fuzzy reading of a short story by M.
Eliade is presented: emergence and disappearance of themes and articula-
tion of episodes are modeled using fuzzy sets. Vaina (1977) also outlines a
semiotic approach to the problem of the coherence of a text, based on
fuzzy topology. Also in Vaina (1978) a model of a relation of “with”
between several people is given. The way people apprehend one another’s
behavior is viewed as a fuzzy multicriteria decision-making process, which



362

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

V.  A Survey of Potential Applications

induces a proximity relation between individuals. This model also involves
concepts from modal logic.

Nowakowska (1976, 1978) describes a formal language of actions for
dialogue purpose. The semantics of dialogues are modeled in the frame-
work of fuzzy set theory.

K. OTHER TOPICS

Lastly, some particular topics are considered.
Damage assessment of structures  An original attempt that deserves

mention is that of Blockley (1975, 1978), who analyzes human factors in
the failure of mechanical structures. Subjectively assessed parameters make
possible modification of the evaluation of the probability of failure.

Aid to creativity  “Aid to creativity” consists here in using a computer to
generate, enumeratively, possibly unexpected solutions of a problem. Such
solutions are constructed by assembling components picked out of differ-
ent sets, each made of homologous elements. These sets are called
“formational sets”; they may be fuzzy, and fuzzy relations can be defined
between them in order to valuate the possibility of associating elements
from different formational sets (see Cools and Peteau, 1974; Kaufmann et
al., 1973; Kaufmann, 1977).

Analysis of scientific literature  Some empirical analyses of the system of
scientific literature by fuzzy sets are provided in Allen (1973) and Jones
(1976).
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CONCLUSION

Obviously, a basic concept in fuzzy set theory is the idea of a set without
sharp boundaries. Another very important concept is that of fuzzy corre-
spondences (represented by fuzzy relations). The sup-min composition
allows building images of fuzzy sets through fuzzy correspondences. When
the correspondences are just ordinary functions, sup–min composition
reduces to the extension principle. Moreover, it should be noted that there
is often no canonical way to extend classical concepts into fuzzy ones. For
instance, operators other than “min” have been pointed out in this book
and require further investigations.

Some applications of fuzzy set theory, such as switching logic or cluster-
ing analysis for example, turn only the first idea to account. They may
appear more multivalent than fuzzy, in the sense that only grades of
membership (rather than fuzzy sets as a whole) are manipulated. Similarly,
multivalent logics only underlie fuzzy set theories without providing a
sufficient framework for approximate reasoning.

Fuzzy sets allow information to be approximately summarized in a
humanlike fashion, or modeling ill-known data. Fuzzy-set theory provides
the right tool for the manipulation of this information, i.e., for approximate
reasoning or for a generalized tolerance analysis. From this point of view
the specification of a fuzzy system consists in a linguistic description of its
behavior and/or assignment of fuzzy parameters to an ordinary mathemat-
ical model. A fuzzy system has a “possibilistic” interpretation, whereas
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Conclusion

a stochastic system has a probabilistic one. Fuzziness may lie in the system
itself or in its model. It is mainly a matter of human perception.

A great amount of work has been already accomplished. However, the
ability to apply fuzzy concepts to practical problems requires a somewhat
deeper understanding of the specificity of Zadeh’s theory.
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LIST OF THE MOST
COMMONLY USED
SYMBOLS

GENERAL MATHEMATICAL SYMBOLS

= equal to

≡ equal to (by definition)

< less than; >, greater than

< less than or equal to; >, greater than or equal to

; For all

' there exists at least one

'! there exists one and only one

[ belongs to

{x, . . . } set of elements x

iff if and only if

3(X) set of subsets of X

Y X set of functions from X to Y

N set of natural integers

R set of real numbers

[a, b] closed real interval

[a, b[ real interval closed in a, open in b

[a, + ∞) set of real numbers greater than or equal to a

e x exponential of x



378List of Symbols

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

ln Napierian logarithm

|a| absolute value of the number a

At transpose of a matrix A

tr(A) sum of diagonal terms of a matrix A

∑ i = 1
n sum of n numbers indexed by i; ∑ i

, sum of numbers
indexed by i

∏i = 1
n product of n numbers indexed by i

eb
a

integral over an interval [a, b]

0, 1 least and greatest elements of a lattice (respectively)

∅ empty set

LOGICAL SYMBOLS

v(P) truth value of proposition P

P ` Q conjunction of P and Q, v(P ` Q) = min(v(P), v(Q))

P ~ Q disjunction of P and Q, v(P ~ Q) = max(v(P), v(Q))

L P negation of P, v( L P) = 1 – v(P)

P < Q conjunction of P and Q, v(P < Q) = max(0,v(P) +
v(Q) – 1)

P > Q disjunction of P and Q, v(P > Q) = min(1,v(P) +
v(Q))

° any implication

→ implication, v(P → Q) = max(1 –v(P), v(Q))

⇒ implication, v(P ⇒ Q) = min(1, 1 – v(P) + v(Q))

A implication, v(PA Q) = 1 – v(P) + v(P) ⋅ v(Q)

α a α b = 1 iff a < b; a α b = b iff b < a

FUZZY SETS SYMBOLS

µ
A

membership function of a fuzzy set A on a universe U

e
U

µ
A
(u)/u Zadeh’s notation of a fuzzy set A on a universe U

Oµ
A
(u)/u Zadeh’s notation of a fuzzy set A on a discrete universe

U

> intersection of fuzzy sets
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< union of fuzzy sets

A complement of the fuzzy set A

# inclusion of fuzzy sets

B weak inclusion of fuzzy sets

,,,,, bold intersection of fuzzy sets

..... bold union of fuzzy sets

+ probabilistic sum of fuzzy sets

⋅ product of fuzzy sets

C intersection of type two fuzzy sets, µ
AC B

(x) =
min (µ

A
(x), µ

B
(x))

D union of type two fuzzy sets, µ
AD B

(x) =
max (µ

A
(x), µ

B
(x))

A- complement of a type two fuzzy set, µ Α- (x) = 1 * µ
A
(x)

E inclusion of type two fuzzy sets

| A| cardinality of a fuzzy set A

suppA support of a fuzzy set A

hgt(A) height of a fuzzy set A

  ̃3(X) set of fuzzy sets on X

  ̃3n
(X) set of type n fuzzy sets on X

  ̃3l (X) set of level l fuzzy sets on X

3
L
(X) set of L-fuzzy sets on X

A × B cartesian product of the fuzzy sets A and B

FUZZY RELATION SYMBOLS

dom(R) domain of the fuzzy relation R

ran(R) range of the fuzzy relation R

c(R) cylindrical extension of R

proj[R; U] projection of R on the universe U

R ° Q sup–min composition of the fuzzy relations R and Q

R * Q inf–max composition of the fuzzy relations R and Q

R a Q sup–α composition of fuzzy relations R and Q

R̂ transitive closure of a fuzzy relation R
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EXTENDED OPERATIONS ON FUZZY SETS ON  R

% addition

* subtraction

( multiplication

/ division

max maximum

min minimum

OTHER SYMBOLS

) Sugeno’s integral

II possibility measure

P probability measure

π possibility distribution
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Michálek, J., 123
Michalski, R. S., 339, 339
Mieno, H., 208
Minsky, M., 320, 374
Miyano, S., 239
Mizumoto, M., 30, 35, 42, 51, 64, 67, 200,

214, 215, 216, 217, 218, 219, 220, 221, 223,
224, 225, 229, 231, 232, 239, 240, 265, 267,
276, 358, 363

Moberg, K. B., 279, 295, 360, 366
Moisil, G., 187
Moore, R. E., 58, 374
Morgan, C., 368
Morita, Y., 287, 296
Mukaidono, M., 152, 153, 154, 155, 156, 157,

186, 321, 333
Murray, F. B., 159, 373
Mysona-Byrska, E., 365



385Author Index

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

N

Nagel, H. H., 358, 364
Nahmias, S., 42, 67, 146
Nakagawa, Y., 358, 364
Nakamura, K., 354, 355, 361, 367
Nasu, M., 224, 225, 239
Nawarecki, E., 365
Nazaroff, G. J., 123, 198, 208
Neff, T. P., 156, 186
Negoita, C. V., 4, 6, 27, 28, 29, 35, 96, 99,

120, 121, 122, 123, 124, 146, 155, 156,
186, 195, 196, 197, 201, 202, 204, 224,
208, 211, 239, 246, 247, 251, 330, 331,
333

Netto, A. B., 16, 35
Nguyen, H. T., 37, 67, 137, 139, 146
Nieminen, J., 67
Noe, J. D., 266, 374
Noguchi, K., 267, 276
Nowakowska, M., 24, 92, 258, 264, 276,

362, 368
Nurmi, H, 352
Nutt, G. J., 266, 374

O

Oda, M., 354, 355, 361, 367
Oden, C. C. 256, 262, 264, 361, 367
Okuda, T., 102, 123, 251, 291, 292, 293, 296,

335, 336, 339, 339
Orlovsky, S. A., 83, 93, 103, 123, 279, 296,

350, 352
Østergaard, J. J., 307
Otsuki, S., 315

P

Pal, S. K., 359, 364
Papert, S., 320, 374
Pappis, C. P., 93, 306, 307, 360, 365
Parikh, R., 2, 6
Parrish, E. A., Jr., 333
Pavlidis, T., 321, 332, 357, 362
Paz, A., 200, 224, 239
Pelletier, F., 368
Peteau, M., 362, 368

Piaget, J., 158, 159, 162, 163, 164, 165,
169

Pinkava, V., 158, 187
Pollatschek, M. A., 208, 245, 246, 251,

 360, 365
Ponasse, D., 35
Ponsard, C., 4, 6, 35, 65, 91, 93, 146,

 360, 366
Poston, T., 122, 124, 199
Prade, H., 37, 42, 46, 49, 52, 53, 64, 67, 106,

111, 122, 143, 146, 186, 187, 246, 247, 249,
250, 251, 295, 360, 365

Preparata, F. P., 154, 156, 186
Prévot, M., 6
Prim, R. C, 79, 374
Procyk, M. T. J., 276, 305, 307, 314, 315, 315
Prugovécki, E., 357, 363
Pun, L., 360, 365

R

Rabin, M. O., 200, 212, 374
Radeckj, T., 20, 35, 331, 333
Ragade, R. K., 4, 35, 288, 296, 342, 343,

348, 352
Raiffa, H., 277, 374
Rajasethupathy, K. S., 347, 348, 348
Ralescu, D. A., 4, 6, 27, 28, 29, 35, 96, 99,

120, 121, 122, 123, 124, l55, l56, 186,
195, 196, 197, 201, 202, 208, 211, 224,
239, 251, 330, 333

Ratiu, T., 208
Reddy, D., 368
Reisinger, L., 331, 334
Rescher, N., 158, 375
Rhodes, M. L., 358, 363
Rieger, B., 361, 368
Riera, T., 35
Robinson, J., 361, 367
Robinson, J. A., 168, 375
Rochfeld, A., 333
Rödder, W., 19, 262, 264
Rosenblatt, F., 320, 375
Rosenfeld, A., 27, 35, 38, 212, 248, 249, 251,

 358, 364
Roventa, E., 123
Roy, B., 248, 250, 281, 296, 375
Ruspini, E. H., 13, 79, 324, 325, 328, 329,

 333, 334, 359, 364
Rutherford, D. A., 306, 307



386Author Index

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

S

Saaty, T. L., 259, 264, 278, 296
Sadeh, E., 154, 157, 185
Sadosky, T. L., 295
Saitta, L., 359, 364
Sambuc, R., 31, 35, 340, 359
Samoylenko, S. I., 365
Sanchez, E., 23, 35, 84, 85, 86, 87, 90, 92,

 93, 166, 177, 185, 187, 337, 339, 340, 359
Santos, E. S., 200, 208, 217, 218, 221, 222

 223, 224, 225, 228, 229, 231, 239, 240
Saridis, G. N., 207, 208, 310, 315, 334, 358,

 363
Sasama, H., 315
Scarlat, E., 365
Schek, H. J., 358, 363
Schotch, P. K., 169, 170, 187
Schützenberger, M. P., 212, 220, 373
Schwartz, D. G., 355, 355
Schwede, G. W., 156, 186
Schweizer, B., 18, 375
Scott, D., 170
Seif, A., 313, 315
Serizawa, M., 311, 315
Shackle, G. L. S., 129, 200, 375
Shafer, G., 128, 129, 130, 339, 375
Shaket, E., 273, 276, 358, 363
Sheng, D. C., 316
Shimura, M., 277, 278, 296, 321, 334
Shortliffe, E. H., 339, 375
Simon, H. A., 294, 375
Sinaceur, H., 6
Sinclair, H., 159
Sinha, N. K., 307
Siy, P., 155, 186, 319, 334
Skala, H. J., 187, 367
Sklar, A., 18, 375
Smirnova, I. M., 4, 5
Smith, R., 62, 374
Sols, I., 208
Sommer, G., 245, 246, 251, 291, 293, 296,

360, 365
Spillman, B., 289, 295
Spillman, R., 289, 295
Srini, V. P., 156, 186
Stallings, W., 322, 334
Stan, E., 251
Stefanescu, A. C., 204, 208
Stegall, F., 364
Steinlage, R. C., 120, 123
Stephanou, H. E., 310, 315, 358, 363

Stoica, M., 365
Sugeno, M., 2, 6, 13, 93, 99, 123, 126, 127,

 128, 133, 134, 135, 146, 147, 202, 208,
 261, 311, 312, 313, 315, 316, 334

Sularia, M., 246, 251

T

Tahani, V., 331, 334
Takahashi, W., 120, 123
Tamura, S., 76, 79, 93, 315, 328, 334, 346,

348
Tanaka, H., 102, 123, 251, 291, 292, 293,

296, 335, 339
Tanaka, K., 30, 35, 42, 51, 64, 67, 76, 79, 93,

200, 214, 215, 216, 217, 218, 219, 220, 221,
223, 224, 225, 229, 231, 232, 239, 240,
265, 267, 276, 315, 328, 334, 336, 337,
346, 348, 358, 363

Taranu, C., 366
Tashiro, T., 89, 93
Tazaki, E., 311, 316, 343, 344, 345, 348
Terano, T., 89, 93, 126, 147, 202, 208, 311,

312, 313, 315, 316, 338, 340
Termini, S., 20, 28, 32, 33, 34
Thayse, A., 153, 156, 157, 185
Thom, R., 353, 354, 375
Thomason, M. G., 75, 93, 205, 224, 240, 322,

334
Tong, R. M., 184, 187, 196, 199, 205, 301,

208, 307
Torasso, P., 322, 332, 359, 364
Toyoda, J., 200, 214, 215, 216, 217, 218, 219,

220, 221, 223, 224, 225, 239
Trillas, E., 35
Tsichritzis, D., 147
Tsukamoto, Y., 89, 93, 338, 340
Turner, B. L., 328, 333

U

Uhr, L., 358, 363
Ullmann, J. D., 211, 274
Umano M, 265, 267, 276
Uragami, N., 358, 363

V

Vaina, L., 289, 361, 368
Van Amerongen, J., 307



387Author Index

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

Vander Veen J. C. T., 307
Van Nauta Lemke, H. R., 306, 307
Van Velthoven, G. D., 334, 366
Varshavskii, V. I., 308, 375
Vidal, P., 359, 365
Vorontsova, I. P., 308, 375

W

Wahlster, W., 266, 276
Walter, D. O., 333, 359, 364
Warfield, J. N., 341, 375
Warren, R. H., 120, 123, 124, 198, 208
Watanabe, S., 5, 6
Watson, S. R., 283, 291, 296
Wechler, W., 200, 219, 220, 225, 240
Wechsler, H., 267, 276, 339, 340, 359
Wee, W. G., 200, 208, 209, 308, 309, 310,

316
Weiss, J. J., 283, 291, 296
Weiss, M. D., 120, 124
WenstØp, F., 24, 271, 274, 275, 276, 361
Whinston, A. B., 279, 287, 288, 295, 360,

366
Willaeys, D., 25, 35, 156, 186, 304, 307
Winston, P. H., 267, 358, 375
Woodbury, M. A., 334
Woods, W. A., 225, 375
Wong, C. K., 120, 124
Wong, G. A., 316
Wright, J. D., 307

Y

Yager, R. R., 206, 209, 280, 296
Yau, S. S., 218, 238, 322, 332
Yeh, R.T., 73, 74, 93, 154, 156, 186, 249,

251, 328, 334
Yelowitz, L., 79, 93

Z

Zadeh, L. A., 1, 2, 3, 4, 5, 6, 10, 11, 12, 14,
18, 20, 21, 25, 26, 30, 31, 35, 37, 40, 51,
62, 63, 65, 67, 68, 69, 70, 72, 73, 74, 75, 77,
78, 81, 82, 91, 93, 98, 102, 118, 122, 123,
136, 137, 141, 142, 143, 144, 145, 147,
151, 164, 165, 166, 169, 173, 174, 175,
176, 177, 178, 180, 181, 184, 186, 187,
188, 189, 191, 197, 198, 199, 207, 207,
209, 210, 211, 212, 213, 214, 220, 225,
226, 227, 228, 229, 232, 234, 235, 238,
257, 262, 239, 240, 241, 242, 243, 251,
267, 268, 269, 270, 271, 272, 273, 276,
280, 284, 285, 295, 296, 297, 298, 299,
301, 306, 317, 318, 320, 332, 334, 337,
340, 358, 359, 360, 361, 363, 367, 375

Zeiger, H. P., 196, 197, 373
Zeleny, M., 296
Zimmermann, H. J., 245, 246, 251, 262,

264
Zo, F., 67
Zucker, S. W., 358, 364
Zwick, M., 355, 355



.



Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

A

α-cut, 19
fuzzy, 41
strong, 19

Algorithm, fuzzy, 226–238
Floyd, 249
Ford, 250
Markov, 229
reinforcement, 310, 312

Ambiguity, relation, 152
Antireflexivity, 77
Antisymmetry, 81

perfect, 81
Antonym, 171, 178
Approximate reasoning, 173–185
Automaton, fuzzy, 199–201, 220–224

restricted, 222

B

Bayes, theorem, extended version, 292
Belief, function, 128

consonant, 129
Branching questionnaire, 270

C

Cardinality, fuzzy, 20
of a fuzzy set, 20

Cartesian product, 36
Catastrophe, 353–355
Category, fuzzy, 122

of fuzzy sets, 121
Certainty, measure, 130
Clause, fuzzy, 152
Closure, Kleene, 211

transitive, 76
Clustering, fuzzy, 323–330
Compatibility, 40
Complementation, λ-, 13

of a fuzzy set, 12
of a type 2 fuzzy set, 63

Composition rule of inference, 182
Concentration, 268
Conjunctions, 161, 163, 164
Consensus, 288–289
Consistency, 24
Constraint, soft, 244
Continuity, F-, 120

fuzzy, 97
Contrast intensification, 268
Control, feedback, fuzzy, 197

fuzzy optimal, 297–301

SUBJECT INDEX

389



390

Fuzzy Sets and Systems: Theory and Applications
by Didier Dubois and Henri Prade

Subject Index

linguistic, 301–306
Cross-over point, 10
Cylindrical extension, 69

 D

Decision, fuzzy, 243
statistical, 291–293

Decision-set, maximal, 243
Decision-tree, fuzzy, 320
Decreasing operation, 42
Deformable prototype, 257
Derivation chain, 212
Derivative, of a fuzzifying function, 116–119
Detachment operation, 167–168
Difference, bounded, 18

 symmetrical, 18
Dilation, 268
Disjunctions, 161, 163, 164
Distance, fuzzy, 38–40

 Hamming, 24

  E

Eigenfuzzy set, 90
Entailment, principle, 182

semantic, 178
Entropy, of a fuzzy number, 62

of a fuzzy set, 33
Equality, of fuzzy sets, 10

e-, 23
weak, 73

Equation, fuzzy, 60–61
of fuzzy relations, 84–90

Events, fuzzy, 140
noninteractivity of, 142
possibility of, 141
probability of, 141

Exemplification, 257
Expression, fuzzy, 152

 minimization, 155–156
Extension principle, 36–38
Extremum, of a fuzzy function, 104–106

 over a fuzzy domain, 101
Equivalence, semantic, 178

  F

Feature, fuzzy, 319
Filter function, 260

Flattening effect, 45
Flou-set, 28
Flow-chart, fuzzy, 234
Function, e, 73

extended, 98
fuzzifying, 98

derivative 116–119
extremum, 104–106
integral, 106–110, 111–115

fuzzy bunch of, 99
fuzzy domain of, 96
fuzzy range of, 96

Fuzzification, g-, 62
kernel, 63
s-, 63

FUZZY, 266
Fuzzy numbers, 26

absolute value, 50
addition, 50, 54
division, 51, 56
entropy, 62
exponential, 49
flat, 57
inverse, 49
L-R representation, 53
maximum of, 52, 56
mean value, 54
minimum of, 52, 56
multiplication, 50, 55,

scalar 49
negative 49
opposite, 49
positive, 49
power, 53
spreads, 54
subtraction, 52, 55
type 2, addition, 66

Fuzzy relations, 68
e-bijective, 73
e-determinate, 73
e-injective, 73
e-onto, 73
e-productive, 73
e-reflexive 73
antireflexive, 77
antisymmetrical, 81

perfectly, 81
between fuzzy sets, 92
composition, 70
cylindrical extension, 69
domain of, 72
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Subject Index

equations of, 84–90
fuzzy-valued, 91
interval-valued, 91
inverse, 73
preference, 278
projection, 69
range of, 72
reflexive, 73

weakly, 73
section, 69
symmetrical, 73
transitive, 75–76

Fuzzy sets, 10
F-, 31
closed, 27

topological sense, 119
compatibility, 40
complementation, 12
consistency, 24
convex, 25
convex combination of, 21
entropy, 33
equality, 10

e-, 23
weak, 22

height, 10
inclusion, 23

e-, 23
weak, 22

intersection, 11
L-, 27
level p, 63
nth power, 18
normalized, 10
open, 119
operators, identification of, 261–263

interactive, 16
Pareto-optimal, 284
power, 20
probabilistic sum, 16
product, 16
shadow, 26
structured, 27
support, 10
symmetrical, 26
tolerance class of, 92
type 2, complementation, 63

inclusion, 64
intersection, 63
mth power, 65,
union, 63

type m, 30
unimodal, 26
union, 11
universe of, 9

  G

Games, fuzzy, 349–351
Grammar, fuzzy, 210–226

context-free, 213
context-sensitive, 213
fractionally, 218
lattice-valued, 219
max-product, 217
N-fold, 215
regular, 213
tree, 218

Grammatical inference, fuzzy, 345–348
Group, fuzzy, 27

Piaget, 158–159
Group-decision-making, 285–288

H

Hasse diagram, 81
Hazard, 157
Hazy space, 122
Hedge, 268
Hierarchy, of concepts, 269

I

Identification, of fuzzy set-operators,
261–263

of a fuzzy system, 205
structural, fuzzy, 343–345

Implicant, fuzzy, 155
prime, 155

Implications, 165–167
Inclusion, of fuzzy sets, 21

e-, 23
weak, 22
of type 2 fuzzy sets, 64

Incompatibility principle, 189
Increasing operation, 42
Index of fuzziness, 33
Injection, fuzzy, 96
Information retrieval, 330–331
Instruction, fuzzy, 226
Integral, fuzzy, 133–134
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Subject Index

of a fuzzifying function, 106–110, 111–115
over a fuzzy domain, 110–115

Interactivity, β-, 70–72
λ-, 271

Intersection, of fuzzy sets, 11
bold, 17
of type 2 fuzzy sets, 63

Interval, fuzzy, 57, 110
ISODATA, fuzzy, 325–328

J

Join, 69

K

Kernel space, 267
Kleene closure, 211

L

Languages, cut-point, 214
fuzzy, 210–226

concatenation, 211
natural, 267–274
programming, fuzzy, 265–267

Lattice, 14
Boolean, 14
Brouwerian, 27
complemented, 15
complete, 15
distributive, 15

Linear programming, 244
Linguistic approximation, 271–272
Logics, fuzzy, 169

fuzzy-valued, 171–173
modal, fuzzy, 169–171
multivalent, 158–169
stochastic, 164

M

Many-valued quantity, 31
Matrix, fuzzy, 61
Meaning, 267
Measure, certainty, 130

Dirac, 127
fuzzy, 126–132

λ-, 127
conditional, 135
necessity, 132

of fuzziness, 32–33
plausibility, 130
possibility, 131

conditional, 138–140
probability, 126

Membership, function, 10
estimation, 256–261
grade, 10

Modeling, structural, fuzzy, 341–343
Models, admissible, 189

validation of, 206–207
Modifier rule, 178
Modus ponens, 167–168

generalized, 183
Multicriteria aggregation, 280–285

N

Necessity, measure, 132
Noise, fuzzy, 202–203
Number, fuzzy, see fuzzy numbers

O

Observability, 196
Observation, fuzzy, 197
Ordered semi-ring, 219
Ordering, fuzzy, 80–84

linear, 82
partial, 81

Orthogonality, 13
Output map, fuzzy, 191

P

Pareto-optimal set, fuzzy, 284
Particularization / conjunction principle, 182
Partition, fuzzy, 13
Partition-tree, 77
Pattern-class, fuzzy, 318
Pattern-recognition, fuzzy, semantic, 318–322

syntactic, 322–323
Perceptrons, fuzzy, 320
Phrase, fuzzy, 152

completed, 153
consensus, 155
contradictory, 153
simple, 153

Piaget-group, 158–159
Polysystems, topological, fuzzy, 198
Possibility, conditional, 138–140
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Subject Index

consistency principle, 137
distribution, 131

fuzzy, 145
fuzzy, 143
linguistic, 146
measure, 131

crisp, 132
of an event, 137
of a fuzzy event, 141
qualification, 177

Preorder, fuzzy, 83
reducible, 83

Probability, consistency principle, 137
fuzzy, 143

distribution, 144
linguistic, 144
measure, 126
of a fuzzy event, 141
qualification, 176

Projection principle, 182
Proposition, fuzzy, 174
PRUF, 272

Q

Qualification rules, 176
Quantification rules, 174
Quantifier, fuzzy, 174

R

Reachability, 195
Reference function, 53
Reflexivity, of a fuzzy relation, 73

weak, 73
Relation, equivalence, convex hull, 79

fuzzy, see fuzzy relations
likeness, 79
proximity, 79
similarity, 77

Response function, fuzzy, 192
Restriction, fuzzy, 69

marginal, 69
separable, 70

Rule of three, 184

S

Set, classical, type 2, 31
fuzzy, see fuzzy sets
maximizing, 101
minimizing, 101

probalistic, 31
valuation, 10

Spilrajn theorem, 82
States, fuzzy, discrimination of, 335–337
Sum, bounded, 16

convex, of “max” and “min”, 19
Surjection, fuzzy, 97
Surprise, potential grade of, 130
System, deformed, 201

fuzzy, discrete-time, 191–199
feedback control, 197
identification, 205
linear, 203–204
memoryless, 194
observability, 196
output map, 191
reachability, 195
response function, 192
transition relation, 191

T

Tableau, 270
Theory, fuzzy, 122
Tolerance analysis, 58, 263
Topology, fuzzy, 119

polysystems, fuzzy, 198
Transitive closure, 76
Transitivity, 75–76
Translation, rules, 174–177

syntax-directed, fuzzy, 215
Triangular norm, 17
Truth, qualification, 176

value, linguistic, 171
local, 176

Türing machine, fuzzy, 227

U

Ultrametric, 80
Union, of fuzzy sets, 11

bold, 17
of type 2 fuzzy sets, 63

Universe of discourse, 267
Upperbound, fuzzy, 82
Utility, fuzzy, 290–291

V

Valuation set, 10
Variable, fuzzy, 69

linguistic, 270
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FOREWORD

When I first met Henri Prade and Didier Dubois, I was impressed at
once by their unusual breadth of knowledge about all facets of the theory
of fuzzy sets and their youthful enthusiasm for a theory that challenges the
traditional reliance on two-valued logic and classical set theory as a basis
for scientific inquiry.

Later on, when they told me about their plans for writing an up-to-date
research monograph on fuzzy sets and systems, I was rather skeptical that
it could be done although the earlier five-volume work of Professor Arnold
Kaufmann had covered the basic ground both comprehensively and with
great authority.

The publication of this volume shows that my skepticism was unwar-
ranted. Dubois and Prade have produced a comprehensible research
monograph that covers almost all of the important developments in the
theory of fuzzy sets and in their applications that have taken place during
the past several years—developments that include their own significant
contributions to fuzzy arithmetic and the analysis of fuzzy relations.

In presenting the work of others, Dubois and Prade have contributed
many useful insights and supplied a number of examples which aid
materially in understanding of the subject matter. Inevitably, there are
some instances where one could take issue with their choice of topics, their
interpretations, and their conclusions. But what is remarkable is that they
have been able to cover so much ground—within the compass of a single
volume—in a field that is undergoing rapid growth and spans a wide
variety of applications ranging from industrial process control to medical
diagnosis and group decision processes.

Like other theories that have broken away from tradition, the theory of
fuzzy sets has been and will continue to be controversial for some time to
come. The present volume may or may not convince the skeptics of the
utility of fuzzy sets. But it will certainly be of great value to those who are
interested in acquainting themselves with the basic aspects of the theory
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Forward

and in exploring its potentialities as a methodology for dealing with
phenomena that are too complex or too ill-defined to be susceptible to
analysis by conventional means.

LOTFI A. ZADEH



PREFACE

Since Lotfi A. Zadeh published his now classic paper almost fifteen
years ago, fuzzy set theory has received more and more attention from
researchers in a wide range of scientific areas, especially in the past few
years. This theory is attractive because it is based on a very intuitive,
although somewhat subtle, idea capable of generating many intellectually
appealing results that provide new insights to old, often-debated questions.
Opinion is still divided about the importance of fuzzy set theory. Some
people have argued that many contributions were simply exercises in
generalization. However, several significant and original developments
have recently been proposed, which should convince those who are still
reluctant. Anyway, fuzziness is not a matter of aesthetics; neither is it an
ingredient to make up arid formal constructions; it is an unavoidable
feature of most humanistic systems and it must be dealt with as such.

This book is intended to be a rather exhaustive research monograph on
fuzzy set theory and its applications. The work is based on a large
compilation of the literature* in English, French, and German. Approxi-
mately 550 publications or communications† are referred to; it is hoped
that they are representative of about a thousand papers existing in the
world. Whenever possible we have tried to cite published easy-to-find
versions of works rather than rare research memoranda. Of course, some
original contributions may have been missed; this is unavoidable in such a
fast growing field of research.

It is not intended here to embed fuzzy set theory in a pure mathematics
framework. Sophisticated formalisms, such as that of category theory, do
not seem suitable in working with concepts at an early stage of their
development. No high-level mathematical tool will be used in the exposi-
tion.

We do not propose that this work be used as a textbook, but only as a
research compendium. As such, topics are developed unequally according

*Throughout this book NF stands for references to the nonfuzzy literature.
†Appearing between 1965 and 1978.
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Preface

to our own state of knowledge and fields of interest. Hence some chapters
are only modest surveys of existing works, while others may appear more
original and detailed. More specifically, there are very few tutorial numeri-
cal examples and no exercises; however, some hints or ideas at their early
stage of development can be found, which we hope will be of some use for
further research.

This book is a structured synthesis in an attempt to unify existing works.
Such an attempt is made necessary because several research directions
have been investigated, often independently.

In spite of the relative lack of mathematical ambition within the work,
some may find the material rather hard to read because it covers a wide
range of topics within a comparatively small number of pages. Thus, this
monograph is aimed at readers at the graduate level, involved in research
dealing with human-centered systems.

This synthesis is organized in five parts, respectively devoted to (1) a
short informal discussion on the nature of fuzziness; different kinds of
uncertainty are pointed out; (2) a structured exposition in five chapters of
the mathematics of fuzzy sets; (3) a description of fuzzy models and formal
structures: logic, systems, languages and algorithms, and theoretical opera-
tions research; (4) a survey of system-oriented applied topics dealing with
fuzzy situation; (5) a brief review of results in existing fields of applica-
tions.

DIDIER DUBOIS

HENRI PRADE

Purdue University
West Lafayette, Indiana

September, 1978
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